Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets
The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-comm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2019-01, Vol.65 (1), p.220-234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 220 |
container_title | IEEE transactions on information theory |
container_volume | 65 |
creator | Connelly, Joseph Zeger, Kenneth |
description | The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field. |
doi_str_mv | 10.1109/TIT.2018.2866244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2159383796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8443369</ieee_id><sourcerecordid>2159383796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H8sy-CgUC6WuQybJtFPrzJhMlf57U1rc3AfnnHvhA-AeownGSD-tZqsJQVhNiBKCMHYBRphzWWjB2SUYoSwVmjF1DW5S2uaVcUxGYFna3rpmOEDbejh1myb82GoX4NIOuYR107UJ1l2E86YNNsL3MPx28ROWnW_aNVz8hAiXx2m66ze2CkO6BVe13aVwd-5j8PHyvCrfivnidVZO54WjlA4FJxgR6r1l3FccK0edINpzIXEgTlRaElvXSkjntPSqQrXyWjBJldMec0nH4PF0t4_d9z6kwWy7fWzzS0Mw11RRqUV2oZPLxS6lGGrTx-bLxoPByBzJmUzOHMmZM7kceThFmhDCv11lhQpN_wBB32iR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159383796</pqid></control><display><type>article</type><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><source>IEEE Electronic Library (IEL)</source><creator>Connelly, Joseph ; Zeger, Kenneth</creator><creatorcontrib>Connelly, Joseph ; Zeger, Kenneth</creatorcontrib><description>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2866244</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alphabets ; capacity ; Frequency modulation ; Linear codes ; Linear coding ; Linearity ; Modules (abstract algebra) ; Network coding ; Networks ; Receivers ; Rings (mathematics) ; Tensile stress</subject><ispartof>IEEE transactions on information theory, 2019-01, Vol.65 (1), p.220-234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</citedby><cites>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</cites><orcidid>0000-0001-6415-1447 ; 0000-0001-7307-7023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8443369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8443369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Connelly, Joseph</creatorcontrib><creatorcontrib>Zeger, Kenneth</creatorcontrib><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</description><subject>Alphabets</subject><subject>capacity</subject><subject>Frequency modulation</subject><subject>Linear codes</subject><subject>Linear coding</subject><subject>Linearity</subject><subject>Modules (abstract algebra)</subject><subject>Network coding</subject><subject>Networks</subject><subject>Receivers</subject><subject>Rings (mathematics)</subject><subject>Tensile stress</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H8sy-CgUC6WuQybJtFPrzJhMlf57U1rc3AfnnHvhA-AeownGSD-tZqsJQVhNiBKCMHYBRphzWWjB2SUYoSwVmjF1DW5S2uaVcUxGYFna3rpmOEDbejh1myb82GoX4NIOuYR107UJ1l2E86YNNsL3MPx28ROWnW_aNVz8hAiXx2m66ze2CkO6BVe13aVwd-5j8PHyvCrfivnidVZO54WjlA4FJxgR6r1l3FccK0edINpzIXEgTlRaElvXSkjntPSqQrXyWjBJldMec0nH4PF0t4_d9z6kwWy7fWzzS0Mw11RRqUV2oZPLxS6lGGrTx-bLxoPByBzJmUzOHMmZM7kceThFmhDCv11lhQpN_wBB32iR</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Connelly, Joseph</creator><creator>Zeger, Kenneth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6415-1447</orcidid><orcidid>https://orcid.org/0000-0001-7307-7023</orcidid></search><sort><creationdate>201901</creationdate><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><author>Connelly, Joseph ; Zeger, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alphabets</topic><topic>capacity</topic><topic>Frequency modulation</topic><topic>Linear codes</topic><topic>Linear coding</topic><topic>Linearity</topic><topic>Modules (abstract algebra)</topic><topic>Network coding</topic><topic>Networks</topic><topic>Receivers</topic><topic>Rings (mathematics)</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Connelly, Joseph</creatorcontrib><creatorcontrib>Zeger, Kenneth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Connelly, Joseph</au><au>Zeger, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-01</date><risdate>2019</risdate><volume>65</volume><issue>1</issue><spage>220</spage><epage>234</epage><pages>220-234</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2866244</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6415-1447</orcidid><orcidid>https://orcid.org/0000-0001-7307-7023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2019-01, Vol.65 (1), p.220-234 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2159383796 |
source | IEEE Electronic Library (IEL) |
subjects | Alphabets capacity Frequency modulation Linear codes Linear coding Linearity Modules (abstract algebra) Network coding Networks Receivers Rings (mathematics) Tensile stress |
title | Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20and%20Achievable%20Rate%20Regions%20for%20Linear%20Network%20Coding%20Over%20Ring%20Alphabets&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Connelly,%20Joseph&rft.date=2019-01&rft.volume=65&rft.issue=1&rft.spage=220&rft.epage=234&rft.pages=220-234&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2866244&rft_dat=%3Cproquest_RIE%3E2159383796%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159383796&rft_id=info:pmid/&rft_ieee_id=8443369&rfr_iscdi=true |