Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets

The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-01, Vol.65 (1), p.220-234
Hauptverfasser: Connelly, Joseph, Zeger, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 220
container_title IEEE transactions on information theory
container_volume 65
creator Connelly, Joseph
Zeger, Kenneth
description The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.
doi_str_mv 10.1109/TIT.2018.2866244
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2159383796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8443369</ieee_id><sourcerecordid>2159383796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H8sy-CgUC6WuQybJtFPrzJhMlf57U1rc3AfnnHvhA-AeownGSD-tZqsJQVhNiBKCMHYBRphzWWjB2SUYoSwVmjF1DW5S2uaVcUxGYFna3rpmOEDbejh1myb82GoX4NIOuYR107UJ1l2E86YNNsL3MPx28ROWnW_aNVz8hAiXx2m66ze2CkO6BVe13aVwd-5j8PHyvCrfivnidVZO54WjlA4FJxgR6r1l3FccK0edINpzIXEgTlRaElvXSkjntPSqQrXyWjBJldMec0nH4PF0t4_d9z6kwWy7fWzzS0Mw11RRqUV2oZPLxS6lGGrTx-bLxoPByBzJmUzOHMmZM7kceThFmhDCv11lhQpN_wBB32iR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159383796</pqid></control><display><type>article</type><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><source>IEEE Electronic Library (IEL)</source><creator>Connelly, Joseph ; Zeger, Kenneth</creator><creatorcontrib>Connelly, Joseph ; Zeger, Kenneth</creatorcontrib><description>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2866244</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alphabets ; capacity ; Frequency modulation ; Linear codes ; Linear coding ; Linearity ; Modules (abstract algebra) ; Network coding ; Networks ; Receivers ; Rings (mathematics) ; Tensile stress</subject><ispartof>IEEE transactions on information theory, 2019-01, Vol.65 (1), p.220-234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</citedby><cites>FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</cites><orcidid>0000-0001-6415-1447 ; 0000-0001-7307-7023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8443369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8443369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Connelly, Joseph</creatorcontrib><creatorcontrib>Zeger, Kenneth</creatorcontrib><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</description><subject>Alphabets</subject><subject>capacity</subject><subject>Frequency modulation</subject><subject>Linear codes</subject><subject>Linear coding</subject><subject>Linearity</subject><subject>Modules (abstract algebra)</subject><subject>Network coding</subject><subject>Networks</subject><subject>Receivers</subject><subject>Rings (mathematics)</subject><subject>Tensile stress</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H8sy-CgUC6WuQybJtFPrzJhMlf57U1rc3AfnnHvhA-AeownGSD-tZqsJQVhNiBKCMHYBRphzWWjB2SUYoSwVmjF1DW5S2uaVcUxGYFna3rpmOEDbejh1myb82GoX4NIOuYR107UJ1l2E86YNNsL3MPx28ROWnW_aNVz8hAiXx2m66ze2CkO6BVe13aVwd-5j8PHyvCrfivnidVZO54WjlA4FJxgR6r1l3FccK0edINpzIXEgTlRaElvXSkjntPSqQrXyWjBJldMec0nH4PF0t4_d9z6kwWy7fWzzS0Mw11RRqUV2oZPLxS6lGGrTx-bLxoPByBzJmUzOHMmZM7kceThFmhDCv11lhQpN_wBB32iR</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Connelly, Joseph</creator><creator>Zeger, Kenneth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6415-1447</orcidid><orcidid>https://orcid.org/0000-0001-7307-7023</orcidid></search><sort><creationdate>201901</creationdate><title>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</title><author>Connelly, Joseph ; Zeger, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-521023dda45db518c3c629d5671e2c6b972aff867cc97d8b0f8d964738c9d1573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alphabets</topic><topic>capacity</topic><topic>Frequency modulation</topic><topic>Linear codes</topic><topic>Linear coding</topic><topic>Linearity</topic><topic>Modules (abstract algebra)</topic><topic>Network coding</topic><topic>Networks</topic><topic>Receivers</topic><topic>Rings (mathematics)</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Connelly, Joseph</creatorcontrib><creatorcontrib>Zeger, Kenneth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Connelly, Joseph</au><au>Zeger, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2019-01</date><risdate>2019</risdate><volume>65</volume><issue>1</issue><spage>220</spage><epage>234</epage><pages>220-234</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The rate of a network code is the ratio of the block size of the network's messages to that of its edge codewords. We compare the linear capacities and achievable rate regions of networks using finite field alphabets to the more general cases of arbitrary ring and module alphabets. For non-commutative rings, two-sided linearity is allowed. Specifically, we prove the following for directed acyclic networks. First, the linear rate region and the linear capacity of any network over a finite field depend only on the characteristic of the field. Furthermore, any two fields with different characteristics yield different linear capacities for at least one network. Second, whenever the characteristic of a given finite field divides the size of a given finite ring, each network's linear rate region over the ring is contained in its linear rate region over the field. Thus, any network's linear capacity over a field is at least its linear capacity over any other ring of the same size. An analogous result also holds for linear network codes over module alphabets. Third, whenever the characteristic of a given finite field does not divide the size of a given finite ring, there is some network whose linear capacity over the ring is strictly greater than its linear capacity over the field. Thus, for any finite field, there always exist rings over which some networks have higher linear capacities than over the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2866244</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6415-1447</orcidid><orcidid>https://orcid.org/0000-0001-7307-7023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2019-01, Vol.65 (1), p.220-234
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2159383796
source IEEE Electronic Library (IEL)
subjects Alphabets
capacity
Frequency modulation
Linear codes
Linear coding
Linearity
Modules (abstract algebra)
Network coding
Networks
Receivers
Rings (mathematics)
Tensile stress
title Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20and%20Achievable%20Rate%20Regions%20for%20Linear%20Network%20Coding%20Over%20Ring%20Alphabets&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Connelly,%20Joseph&rft.date=2019-01&rft.volume=65&rft.issue=1&rft.spage=220&rft.epage=234&rft.pages=220-234&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2866244&rft_dat=%3Cproquest_RIE%3E2159383796%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159383796&rft_id=info:pmid/&rft_ieee_id=8443369&rfr_iscdi=true