Steady and transient inflow dynamics with actuator disk vortex theory
The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arri...
Gespeichert in:
Veröffentlicht in: | Wind energy (Chichester, England) England), 2019-01, Vol.22 (1), p.124-139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 1 |
container_start_page | 124 |
container_title | Wind energy (Chichester, England) |
container_volume | 22 |
creator | Pedersen, Morten D. |
description | The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on
R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory. |
doi_str_mv | 10.1002/we.2275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159269940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159269940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYqvkLAhQuZmtxJJpOllPoDBRcqLkMmydDUdlKT1HHe3tq6dXXO4uNeOAhdUjKhhMBt7yYAgh-hESVSFrQGdrzvvGDA2Ck6S2lJCCWU1iM0e8lO2wHrzuIcdZe86zL2XbsKPbZDp9feJNz7vMDa5K3OIWLr0wf-CjG7b5wXLsThHJ20epXcxV-O0dv97HX6WMyfH56md_PClAC8EC3QsqxEIyoHHKThrDIV07XVDWmgBGIZEU0jWsKlJFVdG6e1BVkKSh1vyjG6OtzdxPC5dSmrZdjGbvdSAeUSKikZ2anrgzIxpBRdqzbRr3UcFCXqdyPVO_W70U7eHGTvV274j6n32V7_AK1iZfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159269940</pqid></control><display><type>article</type><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pedersen, Morten D.</creator><creatorcontrib>Pedersen, Morten D.</creatorcontrib><description>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on
R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2275</identifier><language>eng</language><publisher>Bognor Regis: John Wiley & Sons, Inc</publisher><subject>Actuators ; Consumer goods ; Disks ; dynamic inflow ; Fourier transforms ; Inflow ; Mathematical models ; Misalignment ; Pitch (inclination) ; Theory ; Turbines ; vortex theory ; Vortices ; Wind engineering ; Yaw</subject><ispartof>Wind energy (Chichester, England), 2019-01, Vol.22 (1), p.124-139</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</citedby><cites>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</cites><orcidid>0000-0002-2587-1449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pedersen, Morten D.</creatorcontrib><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><title>Wind energy (Chichester, England)</title><description>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on
R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</description><subject>Actuators</subject><subject>Consumer goods</subject><subject>Disks</subject><subject>dynamic inflow</subject><subject>Fourier transforms</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Misalignment</subject><subject>Pitch (inclination)</subject><subject>Theory</subject><subject>Turbines</subject><subject>vortex theory</subject><subject>Vortices</subject><subject>Wind engineering</subject><subject>Yaw</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYqvkLAhQuZmtxJJpOllPoDBRcqLkMmydDUdlKT1HHe3tq6dXXO4uNeOAhdUjKhhMBt7yYAgh-hESVSFrQGdrzvvGDA2Ck6S2lJCCWU1iM0e8lO2wHrzuIcdZe86zL2XbsKPbZDp9feJNz7vMDa5K3OIWLr0wf-CjG7b5wXLsThHJ20epXcxV-O0dv97HX6WMyfH56md_PClAC8EC3QsqxEIyoHHKThrDIV07XVDWmgBGIZEU0jWsKlJFVdG6e1BVkKSh1vyjG6OtzdxPC5dSmrZdjGbvdSAeUSKikZ2anrgzIxpBRdqzbRr3UcFCXqdyPVO_W70U7eHGTvV274j6n32V7_AK1iZfI</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Pedersen, Morten D.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2587-1449</orcidid></search><sort><creationdate>201901</creationdate><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><author>Pedersen, Morten D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Consumer goods</topic><topic>Disks</topic><topic>dynamic inflow</topic><topic>Fourier transforms</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Misalignment</topic><topic>Pitch (inclination)</topic><topic>Theory</topic><topic>Turbines</topic><topic>vortex theory</topic><topic>Vortices</topic><topic>Wind engineering</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, Morten D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, Morten D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady and transient inflow dynamics with actuator disk vortex theory</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-01</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on
R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</abstract><cop>Bognor Regis</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/we.2275</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2587-1449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-4244 |
ispartof | Wind energy (Chichester, England), 2019-01, Vol.22 (1), p.124-139 |
issn | 1095-4244 1099-1824 |
language | eng |
recordid | cdi_proquest_journals_2159269940 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Actuators Consumer goods Disks dynamic inflow Fourier transforms Inflow Mathematical models Misalignment Pitch (inclination) Theory Turbines vortex theory Vortices Wind engineering Yaw |
title | Steady and transient inflow dynamics with actuator disk vortex theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20and%20transient%20inflow%20dynamics%20with%20actuator%20disk%20vortex%20theory&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Pedersen,%20Morten%20D.&rft.date=2019-01&rft.volume=22&rft.issue=1&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2275&rft_dat=%3Cproquest_cross%3E2159269940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159269940&rft_id=info:pmid/&rfr_iscdi=true |