Steady and transient inflow dynamics with actuator disk vortex theory

The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2019-01, Vol.22 (1), p.124-139
1. Verfasser: Pedersen, Morten D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 124
container_title Wind energy (Chichester, England)
container_volume 22
creator Pedersen, Morten D.
description The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.
doi_str_mv 10.1002/we.2275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159269940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159269940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYqvkLAhQuZmtxJJpOllPoDBRcqLkMmydDUdlKT1HHe3tq6dXXO4uNeOAhdUjKhhMBt7yYAgh-hESVSFrQGdrzvvGDA2Ck6S2lJCCWU1iM0e8lO2wHrzuIcdZe86zL2XbsKPbZDp9feJNz7vMDa5K3OIWLr0wf-CjG7b5wXLsThHJ20epXcxV-O0dv97HX6WMyfH56md_PClAC8EC3QsqxEIyoHHKThrDIV07XVDWmgBGIZEU0jWsKlJFVdG6e1BVkKSh1vyjG6OtzdxPC5dSmrZdjGbvdSAeUSKikZ2anrgzIxpBRdqzbRr3UcFCXqdyPVO_W70U7eHGTvV274j6n32V7_AK1iZfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159269940</pqid></control><display><type>article</type><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pedersen, Morten D.</creator><creatorcontrib>Pedersen, Morten D.</creatorcontrib><description>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2275</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Actuators ; Consumer goods ; Disks ; dynamic inflow ; Fourier transforms ; Inflow ; Mathematical models ; Misalignment ; Pitch (inclination) ; Theory ; Turbines ; vortex theory ; Vortices ; Wind engineering ; Yaw</subject><ispartof>Wind energy (Chichester, England), 2019-01, Vol.22 (1), p.124-139</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</citedby><cites>FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</cites><orcidid>0000-0002-2587-1449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pedersen, Morten D.</creatorcontrib><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><title>Wind energy (Chichester, England)</title><description>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</description><subject>Actuators</subject><subject>Consumer goods</subject><subject>Disks</subject><subject>dynamic inflow</subject><subject>Fourier transforms</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Misalignment</subject><subject>Pitch (inclination)</subject><subject>Theory</subject><subject>Turbines</subject><subject>vortex theory</subject><subject>Vortices</subject><subject>Wind engineering</subject><subject>Yaw</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYqvkLAhQuZmtxJJpOllPoDBRcqLkMmydDUdlKT1HHe3tq6dXXO4uNeOAhdUjKhhMBt7yYAgh-hESVSFrQGdrzvvGDA2Ck6S2lJCCWU1iM0e8lO2wHrzuIcdZe86zL2XbsKPbZDp9feJNz7vMDa5K3OIWLr0wf-CjG7b5wXLsThHJ20epXcxV-O0dv97HX6WMyfH56md_PClAC8EC3QsqxEIyoHHKThrDIV07XVDWmgBGIZEU0jWsKlJFVdG6e1BVkKSh1vyjG6OtzdxPC5dSmrZdjGbvdSAeUSKikZ2anrgzIxpBRdqzbRr3UcFCXqdyPVO_W70U7eHGTvV274j6n32V7_AK1iZfI</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Pedersen, Morten D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2587-1449</orcidid></search><sort><creationdate>201901</creationdate><title>Steady and transient inflow dynamics with actuator disk vortex theory</title><author>Pedersen, Morten D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3225-7f213367b76e2529c546c64a8dab0b2320d407bb7f05990688ceaad293711e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Consumer goods</topic><topic>Disks</topic><topic>dynamic inflow</topic><topic>Fourier transforms</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Misalignment</topic><topic>Pitch (inclination)</topic><topic>Theory</topic><topic>Turbines</topic><topic>vortex theory</topic><topic>Vortices</topic><topic>Wind engineering</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, Morten D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, Morten D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady and transient inflow dynamics with actuator disk vortex theory</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-01</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The actuator disk is a well‐known and widely used theoretical tool in wind engineering. This work proposes a new theory based on an actuator surface, capable of treating time‐varying vectorial load distributions and yaw/pitch misalignment. A simplified representation of vortex motion is used to arrive at a tractable problem. The theory is not restricted to disks; arbitrary coplanar (optionally disjoint) actuator surfaces may be modeled. Some of the theoretical novelties used in the modeling includes use of the fractional Laplacian and extensive use of the Fourier transform on R2. Promising experimental validation based on pitch‐step experiments at the Tjæreborg turbine is furnished. Comparisons are also made to existing methodologies. Analysis and numerical work shows that the model encapsulates Coleman's vortex theory.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2275</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2587-1449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2019-01, Vol.22 (1), p.124-139
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2159269940
source Wiley Online Library Journals Frontfile Complete
subjects Actuators
Consumer goods
Disks
dynamic inflow
Fourier transforms
Inflow
Mathematical models
Misalignment
Pitch (inclination)
Theory
Turbines
vortex theory
Vortices
Wind engineering
Yaw
title Steady and transient inflow dynamics with actuator disk vortex theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20and%20transient%20inflow%20dynamics%20with%20actuator%20disk%20vortex%20theory&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Pedersen,%20Morten%20D.&rft.date=2019-01&rft.volume=22&rft.issue=1&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2275&rft_dat=%3Cproquest_cross%3E2159269940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159269940&rft_id=info:pmid/&rfr_iscdi=true