An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations
Efficiency is a key success factor in complex supply chain networks. It is imperative to ensure proper flow of goods and services in humanitarian supply chains in response to a disaster. To this end, we propose a multi-echelon humanitarian logistic network that considers the location of central ware...
Gespeichert in:
Veröffentlicht in: | Socio-economic planning sciences 2018-12, Vol.64, p.21-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | Socio-economic planning sciences |
container_volume | 64 |
creator | Tavana, Madjid Abtahi, Amir-Reza Di Caprio, Debora Hashemi, Reza Yousefi-Zenouz, Reza |
description | Efficiency is a key success factor in complex supply chain networks. It is imperative to ensure proper flow of goods and services in humanitarian supply chains in response to a disaster. To this end, we propose a multi-echelon humanitarian logistic network that considers the location of central warehouses, managing the inventory of perishable products in the pre-disaster phase, and routing the relief vehicles in the post-disaster phase. An epsilon-constraint method, a non-dominated sorting genetic algorithm (NSGA-II), and a modified NSGA-II called reference point based non-dominated sorting genetic algorithm-II (RPBNSGA-II) are proposed to solve this mixed integer linear programming (MILP) problem. The analysis of variance (ANOVA) is used to analyze the results showing that NSGA-II performs better than the other algorithms with small size problems while RPBNSGA-II outperforms the other algorithms with large size problems.
•In humanitarian supply chains proper flows of relief items must be provided after a disaster.•We propose a multi-echelon humanitarian logistic network for pre- and post-disaster phases.•The former phase focuses on central warehouses location and perishable goods inventories.•The latter phase deals with the multi-echelon multi-depot vehicle routing model proposed.•The problem is solved using a novel reference point based variant of the NSGA-II algorithm. |
doi_str_mv | 10.1016/j.seps.2017.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159266676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003801211730263X</els_id><sourcerecordid>2159266676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7e0d3a5530458811c62ef3bc54f7e9f5c4c09b550754ea1120af49c7af85adc53</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMTtcO3EeEkuFeEmVWGC2XOemdWntYDtU3fjppJSZ6S7nO-fqI-SaQ8aBl7frLGIfMwG8yrjIAIoTMuF1lbMSCn5KJgB5zYALfk4uYlwDgCiEnJDvmaPWJVwGnbClG290st4x677QJR_2LPghWbekq2GrnU06WO1oHPp-s6dmpa2jDtPOhw-6s2lF-4CMatfS3sfEWht1TBjoyOolbsdOaryLtsXwOxQvyVmnNxGv_u6UvD8-vN0_s_nr08v9bM5M3uSJVQhtrqXMoZB1zbkpBXb5wsiiq7DppCkMNAspoZIFas4F6K5oTKW7WurWyHxKbo69ffCfA8ak1n4IbpxUgstGlGVZlWNKHFMm-BgDdqoPdqvDXnFQB9NqrQ6m1cG04kKNpkfo7gjh-P-XxaCisegMtjagSar19j_8B77ait8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159266676</pqid></control><display><type>article</type><title>An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations</title><source>Elsevier ScienceDirect Journals</source><creator>Tavana, Madjid ; Abtahi, Amir-Reza ; Di Caprio, Debora ; Hashemi, Reza ; Yousefi-Zenouz, Reza</creator><creatorcontrib>Tavana, Madjid ; Abtahi, Amir-Reza ; Di Caprio, Debora ; Hashemi, Reza ; Yousefi-Zenouz, Reza</creatorcontrib><description>Efficiency is a key success factor in complex supply chain networks. It is imperative to ensure proper flow of goods and services in humanitarian supply chains in response to a disaster. To this end, we propose a multi-echelon humanitarian logistic network that considers the location of central warehouses, managing the inventory of perishable products in the pre-disaster phase, and routing the relief vehicles in the post-disaster phase. An epsilon-constraint method, a non-dominated sorting genetic algorithm (NSGA-II), and a modified NSGA-II called reference point based non-dominated sorting genetic algorithm-II (RPBNSGA-II) are proposed to solve this mixed integer linear programming (MILP) problem. The analysis of variance (ANOVA) is used to analyze the results showing that NSGA-II performs better than the other algorithms with small size problems while RPBNSGA-II outperforms the other algorithms with large size problems.
•In humanitarian supply chains proper flows of relief items must be provided after a disaster.•We propose a multi-echelon humanitarian logistic network for pre- and post-disaster phases.•The former phase focuses on central warehouses location and perishable goods inventories.•The latter phase deals with the multi-echelon multi-depot vehicle routing model proposed.•The problem is solved using a novel reference point based variant of the NSGA-II algorithm.</description><identifier>ISSN: 0038-0121</identifier><identifier>EISSN: 1873-6041</identifier><identifier>DOI: 10.1016/j.seps.2017.12.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Disaster management ; Disaster relief ; Facility location ; Humanitarian aid ; Humanitarian supply chain ; Inventory ; Inventory management ; Linear programming ; Multi-objective optimization ; Optimization ; Supply ; Supply chains ; Vehicle routing ; Warehouses</subject><ispartof>Socio-economic planning sciences, 2018-12, Vol.64, p.21-37</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7e0d3a5530458811c62ef3bc54f7e9f5c4c09b550754ea1120af49c7af85adc53</citedby><cites>FETCH-LOGICAL-c393t-7e0d3a5530458811c62ef3bc54f7e9f5c4c09b550754ea1120af49c7af85adc53</cites><orcidid>0000-0003-3001-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003801211730263X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tavana, Madjid</creatorcontrib><creatorcontrib>Abtahi, Amir-Reza</creatorcontrib><creatorcontrib>Di Caprio, Debora</creatorcontrib><creatorcontrib>Hashemi, Reza</creatorcontrib><creatorcontrib>Yousefi-Zenouz, Reza</creatorcontrib><title>An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations</title><title>Socio-economic planning sciences</title><description>Efficiency is a key success factor in complex supply chain networks. It is imperative to ensure proper flow of goods and services in humanitarian supply chains in response to a disaster. To this end, we propose a multi-echelon humanitarian logistic network that considers the location of central warehouses, managing the inventory of perishable products in the pre-disaster phase, and routing the relief vehicles in the post-disaster phase. An epsilon-constraint method, a non-dominated sorting genetic algorithm (NSGA-II), and a modified NSGA-II called reference point based non-dominated sorting genetic algorithm-II (RPBNSGA-II) are proposed to solve this mixed integer linear programming (MILP) problem. The analysis of variance (ANOVA) is used to analyze the results showing that NSGA-II performs better than the other algorithms with small size problems while RPBNSGA-II outperforms the other algorithms with large size problems.
•In humanitarian supply chains proper flows of relief items must be provided after a disaster.•We propose a multi-echelon humanitarian logistic network for pre- and post-disaster phases.•The former phase focuses on central warehouses location and perishable goods inventories.•The latter phase deals with the multi-echelon multi-depot vehicle routing model proposed.•The problem is solved using a novel reference point based variant of the NSGA-II algorithm.</description><subject>Algorithms</subject><subject>Disaster management</subject><subject>Disaster relief</subject><subject>Facility location</subject><subject>Humanitarian aid</subject><subject>Humanitarian supply chain</subject><subject>Inventory</subject><subject>Inventory management</subject><subject>Linear programming</subject><subject>Multi-objective optimization</subject><subject>Optimization</subject><subject>Supply</subject><subject>Supply chains</subject><subject>Vehicle routing</subject><subject>Warehouses</subject><issn>0038-0121</issn><issn>1873-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMTtcO3EeEkuFeEmVWGC2XOemdWntYDtU3fjppJSZ6S7nO-fqI-SaQ8aBl7frLGIfMwG8yrjIAIoTMuF1lbMSCn5KJgB5zYALfk4uYlwDgCiEnJDvmaPWJVwGnbClG290st4x677QJR_2LPghWbekq2GrnU06WO1oHPp-s6dmpa2jDtPOhw-6s2lF-4CMatfS3sfEWht1TBjoyOolbsdOaryLtsXwOxQvyVmnNxGv_u6UvD8-vN0_s_nr08v9bM5M3uSJVQhtrqXMoZB1zbkpBXb5wsiiq7DppCkMNAspoZIFas4F6K5oTKW7WurWyHxKbo69ffCfA8ak1n4IbpxUgstGlGVZlWNKHFMm-BgDdqoPdqvDXnFQB9NqrQ6m1cG04kKNpkfo7gjh-P-XxaCisegMtjagSar19j_8B77ait8</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tavana, Madjid</creator><creator>Abtahi, Amir-Reza</creator><creator>Di Caprio, Debora</creator><creator>Hashemi, Reza</creator><creator>Yousefi-Zenouz, Reza</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-3001-4553</orcidid></search><sort><creationdate>20181201</creationdate><title>An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations</title><author>Tavana, Madjid ; Abtahi, Amir-Reza ; Di Caprio, Debora ; Hashemi, Reza ; Yousefi-Zenouz, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7e0d3a5530458811c62ef3bc54f7e9f5c4c09b550754ea1120af49c7af85adc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Disaster management</topic><topic>Disaster relief</topic><topic>Facility location</topic><topic>Humanitarian aid</topic><topic>Humanitarian supply chain</topic><topic>Inventory</topic><topic>Inventory management</topic><topic>Linear programming</topic><topic>Multi-objective optimization</topic><topic>Optimization</topic><topic>Supply</topic><topic>Supply chains</topic><topic>Vehicle routing</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavana, Madjid</creatorcontrib><creatorcontrib>Abtahi, Amir-Reza</creatorcontrib><creatorcontrib>Di Caprio, Debora</creatorcontrib><creatorcontrib>Hashemi, Reza</creatorcontrib><creatorcontrib>Yousefi-Zenouz, Reza</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Socio-economic planning sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavana, Madjid</au><au>Abtahi, Amir-Reza</au><au>Di Caprio, Debora</au><au>Hashemi, Reza</au><au>Yousefi-Zenouz, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations</atitle><jtitle>Socio-economic planning sciences</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>64</volume><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>0038-0121</issn><eissn>1873-6041</eissn><abstract>Efficiency is a key success factor in complex supply chain networks. It is imperative to ensure proper flow of goods and services in humanitarian supply chains in response to a disaster. To this end, we propose a multi-echelon humanitarian logistic network that considers the location of central warehouses, managing the inventory of perishable products in the pre-disaster phase, and routing the relief vehicles in the post-disaster phase. An epsilon-constraint method, a non-dominated sorting genetic algorithm (NSGA-II), and a modified NSGA-II called reference point based non-dominated sorting genetic algorithm-II (RPBNSGA-II) are proposed to solve this mixed integer linear programming (MILP) problem. The analysis of variance (ANOVA) is used to analyze the results showing that NSGA-II performs better than the other algorithms with small size problems while RPBNSGA-II outperforms the other algorithms with large size problems.
•In humanitarian supply chains proper flows of relief items must be provided after a disaster.•We propose a multi-echelon humanitarian logistic network for pre- and post-disaster phases.•The former phase focuses on central warehouses location and perishable goods inventories.•The latter phase deals with the multi-echelon multi-depot vehicle routing model proposed.•The problem is solved using a novel reference point based variant of the NSGA-II algorithm.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.seps.2017.12.004</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3001-4553</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0121 |
ispartof | Socio-economic planning sciences, 2018-12, Vol.64, p.21-37 |
issn | 0038-0121 1873-6041 |
language | eng |
recordid | cdi_proquest_journals_2159266676 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Disaster management Disaster relief Facility location Humanitarian aid Humanitarian supply chain Inventory Inventory management Linear programming Multi-objective optimization Optimization Supply Supply chains Vehicle routing Warehouses |
title | An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20location-inventory-routing%20humanitarian%20supply%20chain%20network%20with%20pre-%20and%20post-disaster%20management%20considerations&rft.jtitle=Socio-economic%20planning%20sciences&rft.au=Tavana,%20Madjid&rft.date=2018-12-01&rft.volume=64&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=0038-0121&rft.eissn=1873-6041&rft_id=info:doi/10.1016/j.seps.2017.12.004&rft_dat=%3Cproquest_cross%3E2159266676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159266676&rft_id=info:pmid/&rft_els_id=S003801211730263X&rfr_iscdi=true |