On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order

We study the $p$-adic loop group Iwahori-Hecke algebra ${\cal H}(G^+,I)$ constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the “double coset basis” of ${\cal H}(G^+,I)$ given by indicator functions of double cosets....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2018-02, Vol.140 (1), p.221-244
1. Verfasser: Muthiah, Dinakar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 1
container_start_page 221
container_title American journal of mathematics
container_volume 140
creator Muthiah, Dinakar
description We study the $p$-adic loop group Iwahori-Hecke algebra ${\cal H}(G^+,I)$ constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the “double coset basis” of ${\cal H}(G^+,I)$ given by indicator functions of double cosets. We prove a generalization of the Iwahori-Matsumoto formula, and as a consequence, we prove that the structure coefficients of the double coset basis are polynomials in the order of the residue field. The basis is naturally indexed by a semi-group $\cal{W}_{\cal{T}}$ on which Braverman, Kazhdan, and Patnaik define a preorder. Their preorder is a natural generalization of the Bruhat order on affine Weyl groups, and they conjecture that the preorder is a partial order. We define another order on $\cal{W}_{\cal{T}}$ which carries a length function and is manifestly a partial order. We prove the two definitions coincide, which implies a positive answer to their conjecture. Interestingly, the length function seems to naturally take values in ${\Bbb Z}\oplus{\Bbb Z}\varepsilon$ where $\varepsilon$ is “infinitesimally” small.
doi_str_mv 10.1353/ajm.2018.0004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159259117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159259117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6dd3d0b3d713d4434c6b4d324af62df81d8af1532f050d14810d796afcaab22d3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwsltidvFX4oQNKqCVKnWAzpbjjzYhjYOdCPHvcVQE0-lOz713egC4JXhBWMbuVXNcUEyKBcaYn4EZwQVGORPiHMzSiKKSUXEJrmJsUosFpjOw23Zw_aUOPtRoZfWHhard2yqoCJ0PsEfK1Bq23vdwH_zYxwdo_Fi1Fmof7QArFesIVWfgUxgPaoA-GBuuwYVTbbQ3v3UOdi_P78sV2mxf18vHDdKM4AHlxjCDK2YEYYZzxnVeccMoVy6nxhXEFMqRjFGHM2wILwg2osyV00pVlBo2B3en3D74z9HGQTZ-DF06KSnJSpqVhIhEoROlg48xWCf7UB9V-JYEy8mcTObkZE5O5hLP_1Ibq4fjGO1_cF4wQQv5Ntmd5JL0Vdoq2Q_mcXCR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159259117</pqid></control><display><type>article</type><title>On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order</title><source>Jstor Complete Legacy</source><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Muthiah, Dinakar</creator><creatorcontrib>Muthiah, Dinakar</creatorcontrib><description>We study the $p$-adic loop group Iwahori-Hecke algebra ${\cal H}(G^+,I)$ constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the “double coset basis” of ${\cal H}(G^+,I)$ given by indicator functions of double cosets. We prove a generalization of the Iwahori-Matsumoto formula, and as a consequence, we prove that the structure coefficients of the double coset basis are polynomials in the order of the residue field. The basis is naturally indexed by a semi-group $\cal{W}_{\cal{T}}$ on which Braverman, Kazhdan, and Patnaik define a preorder. Their preorder is a natural generalization of the Bruhat order on affine Weyl groups, and they conjecture that the preorder is a partial order. We define another order on $\cal{W}_{\cal{T}}$ which carries a length function and is manifestly a partial order. We prove the two definitions coincide, which implies a positive answer to their conjecture. Interestingly, the length function seems to naturally take values in ${\Bbb Z}\oplus{\Bbb Z}\varepsilon$ where $\varepsilon$ is “infinitesimally” small.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2018.0004</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Mathematical analysis ; Polynomials</subject><ispartof>American journal of mathematics, 2018-02, Vol.140 (1), p.221-244</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6dd3d0b3d713d4434c6b4d324af62df81d8af1532f050d14810d796afcaab22d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/683728/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/683728$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,776,780,21108,27903,27904,56820,57380</link.rule.ids></links><search><creatorcontrib>Muthiah, Dinakar</creatorcontrib><title>On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order</title><title>American journal of mathematics</title><description>We study the $p$-adic loop group Iwahori-Hecke algebra ${\cal H}(G^+,I)$ constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the “double coset basis” of ${\cal H}(G^+,I)$ given by indicator functions of double cosets. We prove a generalization of the Iwahori-Matsumoto formula, and as a consequence, we prove that the structure coefficients of the double coset basis are polynomials in the order of the residue field. The basis is naturally indexed by a semi-group $\cal{W}_{\cal{T}}$ on which Braverman, Kazhdan, and Patnaik define a preorder. Their preorder is a natural generalization of the Bruhat order on affine Weyl groups, and they conjecture that the preorder is a partial order. We define another order on $\cal{W}_{\cal{T}}$ which carries a length function and is manifestly a partial order. We prove the two definitions coincide, which implies a positive answer to their conjecture. Interestingly, the length function seems to naturally take values in ${\Bbb Z}\oplus{\Bbb Z}\varepsilon$ where $\varepsilon$ is “infinitesimally” small.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkD1PwzAQhi0EEqUwsltidvFX4oQNKqCVKnWAzpbjjzYhjYOdCPHvcVQE0-lOz713egC4JXhBWMbuVXNcUEyKBcaYn4EZwQVGORPiHMzSiKKSUXEJrmJsUosFpjOw23Zw_aUOPtRoZfWHhard2yqoCJ0PsEfK1Bq23vdwH_zYxwdo_Fi1Fmof7QArFesIVWfgUxgPaoA-GBuuwYVTbbQ3v3UOdi_P78sV2mxf18vHDdKM4AHlxjCDK2YEYYZzxnVeccMoVy6nxhXEFMqRjFGHM2wILwg2osyV00pVlBo2B3en3D74z9HGQTZ-DF06KSnJSpqVhIhEoROlg48xWCf7UB9V-JYEy8mcTObkZE5O5hLP_1Ibq4fjGO1_cF4wQQv5Ntmd5JL0Vdoq2Q_mcXCR</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Muthiah, Dinakar</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180201</creationdate><title>On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order</title><author>Muthiah, Dinakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6dd3d0b3d713d4434c6b4d324af62df81d8af1532f050d14810d796afcaab22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthiah, Dinakar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthiah, Dinakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order</atitle><jtitle>American journal of mathematics</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>140</volume><issue>1</issue><spage>221</spage><epage>244</epage><pages>221-244</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We study the $p$-adic loop group Iwahori-Hecke algebra ${\cal H}(G^+,I)$ constructed by Braverman, Kazhdan, and Patnaik and give positive answers to two of their conjectures. First, we algebraically develop the “double coset basis” of ${\cal H}(G^+,I)$ given by indicator functions of double cosets. We prove a generalization of the Iwahori-Matsumoto formula, and as a consequence, we prove that the structure coefficients of the double coset basis are polynomials in the order of the residue field. The basis is naturally indexed by a semi-group $\cal{W}_{\cal{T}}$ on which Braverman, Kazhdan, and Patnaik define a preorder. Their preorder is a natural generalization of the Bruhat order on affine Weyl groups, and they conjecture that the preorder is a partial order. We define another order on $\cal{W}_{\cal{T}}$ which carries a length function and is manifestly a partial order. We prove the two definitions coincide, which implies a positive answer to their conjecture. Interestingly, the length function seems to naturally take values in ${\Bbb Z}\oplus{\Bbb Z}\varepsilon$ where $\varepsilon$ is “infinitesimally” small.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2018.0004</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2018-02, Vol.140 (1), p.221-244
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_2159259117
source Jstor Complete Legacy; Project MUSE - Premium Collection; JSTOR Mathematics & Statistics
subjects Algebra
Mathematical analysis
Polynomials
title On Iwahori-Hecke algebras for p-adic loop groups: double coset basis and Bruhat order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Iwahori-Hecke%20algebras%20for%20p-adic%20loop%20groups:%20double%20coset%20basis%20and%20Bruhat%20order&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Muthiah,%20Dinakar&rft.date=2018-02-01&rft.volume=140&rft.issue=1&rft.spage=221&rft.epage=244&rft.pages=221-244&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2018.0004&rft_dat=%3Cproquest_cross%3E2159259117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159259117&rft_id=info:pmid/&rfr_iscdi=true