Durability prediction of an ultra-large mining truck tire using an enhanced finite element method

Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169
Hauptverfasser: Nyaaba, Wedam, Bolarinwa, Emmanuel O, Frimpong, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 161
container_title Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
container_volume 233
creator Nyaaba, Wedam
Bolarinwa, Emmanuel O
Frimpong, Samuel
description Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.
doi_str_mv 10.1177/0954407018795278
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159057550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954407018795278</sage_id><sourcerecordid>2159057550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8R_PRNM1R1k9Y8KLnkrST3axtuibpYf97W1YQBOcyMO_33sBD6JrRW8aUuqNaFgVVlFVKS66qE7TgtGCEa81O0WKWyayfo4uUdnQaVcgFMg9jNNZ3Ph_wPkLrm-yHgAeHTcBjl6MhnYkbwL0PPmxwjmPzibOPgMc0HyYMwtaEBlrsJiYDhg56CBn3kLdDe4nOnOkSXP3sJfp4enxfvZD12_Pr6n5NGiFZJqXkopFUlJxL66QsHAg33QRlXFjg0DptZeV0a8Ey60SpwEhhS-FUBcKIJbo55u7j8DVCyvVuGGOYXtacSU2lklP8EtEj1cQhpQiu3kffm3ioGa3nIuu_RU4WcrQks4Hf0H_5b7q0cyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159057550</pqid></control><display><type>article</type><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><source>SAGE Complete</source><creator>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</creator><creatorcontrib>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</creatorcontrib><description>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/0954407018795278</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Coal mines ; Computer simulation ; Crack initiation ; Crack propagation ; Fatigue failure ; Fatigue life ; Fillers ; Finite element method ; Fracture mechanics ; Life prediction ; Mathematical analysis ; Mining ; Nucleation ; Pressure effects ; Rubber ; Separation ; Shafts (machine elements) ; Strain ; Surface mining</subject><ispartof>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</citedby><cites>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</cites><orcidid>0000-0003-4608-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954407018795278$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954407018795278$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Nyaaba, Wedam</creatorcontrib><creatorcontrib>Bolarinwa, Emmanuel O</creatorcontrib><creatorcontrib>Frimpong, Samuel</creatorcontrib><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><title>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</title><description>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</description><subject>Coal mines</subject><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fillers</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Life prediction</subject><subject>Mathematical analysis</subject><subject>Mining</subject><subject>Nucleation</subject><subject>Pressure effects</subject><subject>Rubber</subject><subject>Separation</subject><subject>Shafts (machine elements)</subject><subject>Strain</subject><subject>Surface mining</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8R_PRNM1R1k9Y8KLnkrST3axtuibpYf97W1YQBOcyMO_33sBD6JrRW8aUuqNaFgVVlFVKS66qE7TgtGCEa81O0WKWyayfo4uUdnQaVcgFMg9jNNZ3Ph_wPkLrm-yHgAeHTcBjl6MhnYkbwL0PPmxwjmPzibOPgMc0HyYMwtaEBlrsJiYDhg56CBn3kLdDe4nOnOkSXP3sJfp4enxfvZD12_Pr6n5NGiFZJqXkopFUlJxL66QsHAg33QRlXFjg0DptZeV0a8Ey60SpwEhhS-FUBcKIJbo55u7j8DVCyvVuGGOYXtacSU2lklP8EtEj1cQhpQiu3kffm3ioGa3nIuu_RU4WcrQks4Hf0H_5b7q0cyc</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Nyaaba, Wedam</creator><creator>Bolarinwa, Emmanuel O</creator><creator>Frimpong, Samuel</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-4608-7087</orcidid></search><sort><creationdate>201901</creationdate><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><author>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coal mines</topic><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fillers</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Life prediction</topic><topic>Mathematical analysis</topic><topic>Mining</topic><topic>Nucleation</topic><topic>Pressure effects</topic><topic>Rubber</topic><topic>Separation</topic><topic>Shafts (machine elements)</topic><topic>Strain</topic><topic>Surface mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyaaba, Wedam</creatorcontrib><creatorcontrib>Bolarinwa, Emmanuel O</creatorcontrib><creatorcontrib>Frimpong, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyaaba, Wedam</au><au>Bolarinwa, Emmanuel O</au><au>Frimpong, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</jtitle><date>2019-01</date><risdate>2019</risdate><volume>233</volume><issue>1</issue><spage>161</spage><epage>169</epage><pages>161-169</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954407018795278</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4608-7087</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-4070
ispartof Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169
issn 0954-4070
2041-2991
language eng
recordid cdi_proquest_journals_2159057550
source SAGE Complete
subjects Coal mines
Computer simulation
Crack initiation
Crack propagation
Fatigue failure
Fatigue life
Fillers
Finite element method
Fracture mechanics
Life prediction
Mathematical analysis
Mining
Nucleation
Pressure effects
Rubber
Separation
Shafts (machine elements)
Strain
Surface mining
title Durability prediction of an ultra-large mining truck tire using an enhanced finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Durability%20prediction%20of%20an%20ultra-large%20mining%20truck%20tire%20using%20an%20enhanced%20finite%20element%20method&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers,%20Part%20D:%20Journal%20of%20Automobile%20Engineering&rft.au=Nyaaba,%20Wedam&rft.date=2019-01&rft.volume=233&rft.issue=1&rft.spage=161&rft.epage=169&rft.pages=161-169&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/0954407018795278&rft_dat=%3Cproquest_cross%3E2159057550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159057550&rft_id=info:pmid/&rft_sage_id=10.1177_0954407018795278&rfr_iscdi=true