Durability prediction of an ultra-large mining truck tire using an enhanced finite element method
Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aid...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 161 |
container_title | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering |
container_volume | 233 |
creator | Nyaaba, Wedam Bolarinwa, Emmanuel O Frimpong, Samuel |
description | Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation. |
doi_str_mv | 10.1177/0954407018795278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2159057550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954407018795278</sage_id><sourcerecordid>2159057550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8R_PRNM1R1k9Y8KLnkrST3axtuibpYf97W1YQBOcyMO_33sBD6JrRW8aUuqNaFgVVlFVKS66qE7TgtGCEa81O0WKWyayfo4uUdnQaVcgFMg9jNNZ3Ph_wPkLrm-yHgAeHTcBjl6MhnYkbwL0PPmxwjmPzibOPgMc0HyYMwtaEBlrsJiYDhg56CBn3kLdDe4nOnOkSXP3sJfp4enxfvZD12_Pr6n5NGiFZJqXkopFUlJxL66QsHAg33QRlXFjg0DptZeV0a8Ey60SpwEhhS-FUBcKIJbo55u7j8DVCyvVuGGOYXtacSU2lklP8EtEj1cQhpQiu3kffm3ioGa3nIuu_RU4WcrQks4Hf0H_5b7q0cyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159057550</pqid></control><display><type>article</type><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><source>SAGE Complete</source><creator>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</creator><creatorcontrib>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</creatorcontrib><description>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</description><identifier>ISSN: 0954-4070</identifier><identifier>EISSN: 2041-2991</identifier><identifier>DOI: 10.1177/0954407018795278</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Coal mines ; Computer simulation ; Crack initiation ; Crack propagation ; Fatigue failure ; Fatigue life ; Fillers ; Finite element method ; Fracture mechanics ; Life prediction ; Mathematical analysis ; Mining ; Nucleation ; Pressure effects ; Rubber ; Separation ; Shafts (machine elements) ; Strain ; Surface mining</subject><ispartof>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</citedby><cites>FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</cites><orcidid>0000-0003-4608-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954407018795278$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954407018795278$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,776,780,788,21798,27899,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Nyaaba, Wedam</creatorcontrib><creatorcontrib>Bolarinwa, Emmanuel O</creatorcontrib><creatorcontrib>Frimpong, Samuel</creatorcontrib><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><title>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</title><description>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</description><subject>Coal mines</subject><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fillers</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Life prediction</subject><subject>Mathematical analysis</subject><subject>Mining</subject><subject>Nucleation</subject><subject>Pressure effects</subject><subject>Rubber</subject><subject>Separation</subject><subject>Shafts (machine elements)</subject><subject>Strain</subject><subject>Surface mining</subject><issn>0954-4070</issn><issn>2041-2991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8R_PRNM1R1k9Y8KLnkrST3axtuibpYf97W1YQBOcyMO_33sBD6JrRW8aUuqNaFgVVlFVKS66qE7TgtGCEa81O0WKWyayfo4uUdnQaVcgFMg9jNNZ3Ph_wPkLrm-yHgAeHTcBjl6MhnYkbwL0PPmxwjmPzibOPgMc0HyYMwtaEBlrsJiYDhg56CBn3kLdDe4nOnOkSXP3sJfp4enxfvZD12_Pr6n5NGiFZJqXkopFUlJxL66QsHAg33QRlXFjg0DptZeV0a8Ey60SpwEhhS-FUBcKIJbo55u7j8DVCyvVuGGOYXtacSU2lklP8EtEj1cQhpQiu3kffm3ioGa3nIuu_RU4WcrQks4Hf0H_5b7q0cyc</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Nyaaba, Wedam</creator><creator>Bolarinwa, Emmanuel O</creator><creator>Frimpong, Samuel</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-4608-7087</orcidid></search><sort><creationdate>201901</creationdate><title>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</title><author>Nyaaba, Wedam ; Bolarinwa, Emmanuel O ; Frimpong, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6523c5036225bf554fe3f52330123be2edf9b58f9dbeb1bf367ea53b63f78e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coal mines</topic><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fillers</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Life prediction</topic><topic>Mathematical analysis</topic><topic>Mining</topic><topic>Nucleation</topic><topic>Pressure effects</topic><topic>Rubber</topic><topic>Separation</topic><topic>Shafts (machine elements)</topic><topic>Strain</topic><topic>Surface mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyaaba, Wedam</creatorcontrib><creatorcontrib>Bolarinwa, Emmanuel O</creatorcontrib><creatorcontrib>Frimpong, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyaaba, Wedam</au><au>Bolarinwa, Emmanuel O</au><au>Frimpong, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Durability prediction of an ultra-large mining truck tire using an enhanced finite element method</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</jtitle><date>2019-01</date><risdate>2019</risdate><volume>233</volume><issue>1</issue><spage>161</spage><epage>169</epage><pages>161-169</pages><issn>0954-4070</issn><eissn>2041-2991</eissn><abstract>Ultra-class mining trucks used for material haulage in rugged surface mining terrains experience premature tire fatigue failure in operation. Typical failures include belt edge separation, ply turn-up separation, and tread base and sidewall cracking. The use of reinforcing fillers and processing aids in tire compounds result in the formation of microstructural in-homogeneities in the compounds. This article presents an application of the critical plane analysis technique for predicting the fatigue life of the belt package of an ultra-large mining truck (CAT 795F) tire of size 56/80R63 in a surface coal mine. Experimental data obtained from extracted specimens (sidewall, tread, and belt edge region) of the tire are used to characterize the stress–strain and fatigue behavior of the modeled tire. The tire’s duty cycle stresses and strains were obtained from finite element analysis of the rolling tire in Abaqus. Fatigue life calculations were performed in the rubber fatigue solver Endurica CL. Effects of inflation pressure, tire speed, and axle load on the fatigue life of the belt package under strain-crystallizing and non-crystallizing conditions of the belt compound are discussed. Specifically, the results show the belt edges to be critical regarding crack nucleation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954407018795278</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4608-7087</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4070 |
ispartof | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019-01, Vol.233 (1), p.161-169 |
issn | 0954-4070 2041-2991 |
language | eng |
recordid | cdi_proquest_journals_2159057550 |
source | SAGE Complete |
subjects | Coal mines Computer simulation Crack initiation Crack propagation Fatigue failure Fatigue life Fillers Finite element method Fracture mechanics Life prediction Mathematical analysis Mining Nucleation Pressure effects Rubber Separation Shafts (machine elements) Strain Surface mining |
title | Durability prediction of an ultra-large mining truck tire using an enhanced finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Durability%20prediction%20of%20an%20ultra-large%20mining%20truck%20tire%20using%20an%20enhanced%20finite%20element%20method&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers,%20Part%20D:%20Journal%20of%20Automobile%20Engineering&rft.au=Nyaaba,%20Wedam&rft.date=2019-01&rft.volume=233&rft.issue=1&rft.spage=161&rft.epage=169&rft.pages=161-169&rft.issn=0954-4070&rft.eissn=2041-2991&rft_id=info:doi/10.1177/0954407018795278&rft_dat=%3Cproquest_cross%3E2159057550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159057550&rft_id=info:pmid/&rft_sage_id=10.1177_0954407018795278&rfr_iscdi=true |