Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers

Robust and flexible micro‐supercapacitors based upon a graphene oxide–silk layered bionanocomposite is reported. Generation of micropatterned electrodes with sub‐micrometer spatial resolution is accomplished using a novel resist‐stenciling technique, enabling the transfer of complex microcircuit des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2018-12, Vol.5 (24), p.n/a
Hauptverfasser: Ma, Ruilong, Gordon, Daniel, Yushin, Gleb, Tsukruk, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced materials interfaces
container_volume 5
creator Ma, Ruilong
Gordon, Daniel
Yushin, Gleb
Tsukruk, Vladimir V.
description Robust and flexible micro‐supercapacitors based upon a graphene oxide–silk layered bionanocomposite is reported. Generation of micropatterned electrodes with sub‐micrometer spatial resolution is accomplished using a novel resist‐stenciling technique, enabling the transfer of complex microcircuit designs to a graphene oxide–silk layered substrate as chemically reduced features microfeatures across wafer‐length scales. Resist‐stenciling can produce micropatterned reduction features with over ten times the feature density compared to techniques such as laser‐scribing or screen printing. As a proof‐of‐concept, resist‐stenciling is used to fabricate the first 2D micro‐supercapacitors integrated into a layered graphene bionanocomposite. These demonstrate a specific capacitance of ≈128 F g−1, good capacitance retention under charge cycling (87.5% after 2000 cycles), and repeated mechanical bending without failure. Resist‐stenciling leverages tools currently in use by the microelectronics industry to enable the scalable, high‐resolution conversion of layered nanocomposites into microelectronic circuit, storage, and sensing elements. Fabrication of micropatterned electrodes with sub‐micrometer spatial resolution for flexible supercapacitors is accomplished using a novel resist‐stenciling technique on a graphene oxide–silk layered substrate. As a proof‐of‐concept, resist‐stenciling is used to fabricate the 2D micro‐supercapacitors integrated into a graphene bionanocomposite. These demonstrate a high specific capacitance combined with good capacitance retention under charge cycling and after repeated mechanical bending.
doi_str_mv 10.1002/admi.201801203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2158484983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158484983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4813-e559dae7b64a2a4ebfe1cec406b4352c5e7409763775de5ffe47c3c9258fa07b3</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhSdGEwmydd3EdXF-O-0SEZAEYiK6nkynt3GwtHWmRNnxCCa-IU9iAaPuXN2b3O-cm3MQuiS4TzCm1zpb2T7FJMaEYnaCOpQkUSiZwKd_9nPU836JMSaEEhqzDsofqnTtm0CXWTAu4N2mBQRza1xV66YBV0IWjAowjasy8AfscN1tPxbrGpzRtTa2qZwPbBlMnK6foYTd9nNhi5fgxrY2LeUv0FmuCw-979lFT-PR4_AunN1PpsPBLDQ8JiwEIZJMg0wjrqnmkOZADBiOo5QzQY0AyXEiIyalyEDkOXBpmEmoiHONZcq66OroW7vqdQ2-Uctq7cr2paJExDzmScxaqn-k2iDeO8hV7exKu40iWO3rVPs61U-drSA5Ct5sAZt_aDW4nU9_tV9F23xO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158484983</pqid></control><display><type>article</type><title>Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Ruilong ; Gordon, Daniel ; Yushin, Gleb ; Tsukruk, Vladimir V.</creator><creatorcontrib>Ma, Ruilong ; Gordon, Daniel ; Yushin, Gleb ; Tsukruk, Vladimir V.</creatorcontrib><description>Robust and flexible micro‐supercapacitors based upon a graphene oxide–silk layered bionanocomposite is reported. Generation of micropatterned electrodes with sub‐micrometer spatial resolution is accomplished using a novel resist‐stenciling technique, enabling the transfer of complex microcircuit designs to a graphene oxide–silk layered substrate as chemically reduced features microfeatures across wafer‐length scales. Resist‐stenciling can produce micropatterned reduction features with over ten times the feature density compared to techniques such as laser‐scribing or screen printing. As a proof‐of‐concept, resist‐stenciling is used to fabricate the first 2D micro‐supercapacitors integrated into a layered graphene bionanocomposite. These demonstrate a specific capacitance of ≈128 F g−1, good capacitance retention under charge cycling (87.5% after 2000 cycles), and repeated mechanical bending without failure. Resist‐stenciling leverages tools currently in use by the microelectronics industry to enable the scalable, high‐resolution conversion of layered nanocomposites into microelectronic circuit, storage, and sensing elements. Fabrication of micropatterned electrodes with sub‐micrometer spatial resolution for flexible supercapacitors is accomplished using a novel resist‐stenciling technique on a graphene oxide–silk layered substrate. As a proof‐of‐concept, resist‐stenciling is used to fabricate the 2D micro‐supercapacitors integrated into a graphene bionanocomposite. These demonstrate a high specific capacitance combined with good capacitance retention under charge cycling and after repeated mechanical bending.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201801203</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>biographene paper ; Capacitance ; Electrodes ; energy storage ; Graphene ; microcapacitors ; Microelectronics ; micropatterned electrodes ; Micropatterning ; Nanocomposites ; Organic chemistry ; Screen printing ; Silk ; Spatial resolution ; Substrates ; Supercapacitors</subject><ispartof>Advanced materials interfaces, 2018-12, Vol.5 (24), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4813-e559dae7b64a2a4ebfe1cec406b4352c5e7409763775de5ffe47c3c9258fa07b3</citedby><cites>FETCH-LOGICAL-c4813-e559dae7b64a2a4ebfe1cec406b4352c5e7409763775de5ffe47c3c9258fa07b3</cites><orcidid>0000-0001-5489-0967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201801203$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201801203$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ma, Ruilong</creatorcontrib><creatorcontrib>Gordon, Daniel</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V.</creatorcontrib><title>Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers</title><title>Advanced materials interfaces</title><description>Robust and flexible micro‐supercapacitors based upon a graphene oxide–silk layered bionanocomposite is reported. Generation of micropatterned electrodes with sub‐micrometer spatial resolution is accomplished using a novel resist‐stenciling technique, enabling the transfer of complex microcircuit designs to a graphene oxide–silk layered substrate as chemically reduced features microfeatures across wafer‐length scales. Resist‐stenciling can produce micropatterned reduction features with over ten times the feature density compared to techniques such as laser‐scribing or screen printing. As a proof‐of‐concept, resist‐stenciling is used to fabricate the first 2D micro‐supercapacitors integrated into a layered graphene bionanocomposite. These demonstrate a specific capacitance of ≈128 F g−1, good capacitance retention under charge cycling (87.5% after 2000 cycles), and repeated mechanical bending without failure. Resist‐stenciling leverages tools currently in use by the microelectronics industry to enable the scalable, high‐resolution conversion of layered nanocomposites into microelectronic circuit, storage, and sensing elements. Fabrication of micropatterned electrodes with sub‐micrometer spatial resolution for flexible supercapacitors is accomplished using a novel resist‐stenciling technique on a graphene oxide–silk layered substrate. As a proof‐of‐concept, resist‐stenciling is used to fabricate the 2D micro‐supercapacitors integrated into a graphene bionanocomposite. These demonstrate a high specific capacitance combined with good capacitance retention under charge cycling and after repeated mechanical bending.</description><subject>biographene paper</subject><subject>Capacitance</subject><subject>Electrodes</subject><subject>energy storage</subject><subject>Graphene</subject><subject>microcapacitors</subject><subject>Microelectronics</subject><subject>micropatterned electrodes</subject><subject>Micropatterning</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Screen printing</subject><subject>Silk</subject><subject>Spatial resolution</subject><subject>Substrates</subject><subject>Supercapacitors</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAUhSdGEwmydd3EdXF-O-0SEZAEYiK6nkynt3GwtHWmRNnxCCa-IU9iAaPuXN2b3O-cm3MQuiS4TzCm1zpb2T7FJMaEYnaCOpQkUSiZwKd_9nPU836JMSaEEhqzDsofqnTtm0CXWTAu4N2mBQRza1xV66YBV0IWjAowjasy8AfscN1tPxbrGpzRtTa2qZwPbBlMnK6foYTd9nNhi5fgxrY2LeUv0FmuCw-979lFT-PR4_AunN1PpsPBLDQ8JiwEIZJMg0wjrqnmkOZADBiOo5QzQY0AyXEiIyalyEDkOXBpmEmoiHONZcq66OroW7vqdQ2-Uctq7cr2paJExDzmScxaqn-k2iDeO8hV7exKu40iWO3rVPs61U-drSA5Ct5sAZt_aDW4nU9_tV9F23xO</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ma, Ruilong</creator><creator>Gordon, Daniel</creator><creator>Yushin, Gleb</creator><creator>Tsukruk, Vladimir V.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5489-0967</orcidid></search><sort><creationdate>20181201</creationdate><title>Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers</title><author>Ma, Ruilong ; Gordon, Daniel ; Yushin, Gleb ; Tsukruk, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4813-e559dae7b64a2a4ebfe1cec406b4352c5e7409763775de5ffe47c3c9258fa07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biographene paper</topic><topic>Capacitance</topic><topic>Electrodes</topic><topic>energy storage</topic><topic>Graphene</topic><topic>microcapacitors</topic><topic>Microelectronics</topic><topic>micropatterned electrodes</topic><topic>Micropatterning</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Screen printing</topic><topic>Silk</topic><topic>Spatial resolution</topic><topic>Substrates</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ruilong</creatorcontrib><creatorcontrib>Gordon, Daniel</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ruilong</au><au>Gordon, Daniel</au><au>Yushin, Gleb</au><au>Tsukruk, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers</atitle><jtitle>Advanced materials interfaces</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>5</volume><issue>24</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Robust and flexible micro‐supercapacitors based upon a graphene oxide–silk layered bionanocomposite is reported. Generation of micropatterned electrodes with sub‐micrometer spatial resolution is accomplished using a novel resist‐stenciling technique, enabling the transfer of complex microcircuit designs to a graphene oxide–silk layered substrate as chemically reduced features microfeatures across wafer‐length scales. Resist‐stenciling can produce micropatterned reduction features with over ten times the feature density compared to techniques such as laser‐scribing or screen printing. As a proof‐of‐concept, resist‐stenciling is used to fabricate the first 2D micro‐supercapacitors integrated into a layered graphene bionanocomposite. These demonstrate a specific capacitance of ≈128 F g−1, good capacitance retention under charge cycling (87.5% after 2000 cycles), and repeated mechanical bending without failure. Resist‐stenciling leverages tools currently in use by the microelectronics industry to enable the scalable, high‐resolution conversion of layered nanocomposites into microelectronic circuit, storage, and sensing elements. Fabrication of micropatterned electrodes with sub‐micrometer spatial resolution for flexible supercapacitors is accomplished using a novel resist‐stenciling technique on a graphene oxide–silk layered substrate. As a proof‐of‐concept, resist‐stenciling is used to fabricate the 2D micro‐supercapacitors integrated into a graphene bionanocomposite. These demonstrate a high specific capacitance combined with good capacitance retention under charge cycling and after repeated mechanical bending.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201801203</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5489-0967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2018-12, Vol.5 (24), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2158484983
source Wiley Online Library Journals Frontfile Complete
subjects biographene paper
Capacitance
Electrodes
energy storage
Graphene
microcapacitors
Microelectronics
micropatterned electrodes
Micropatterning
Nanocomposites
Organic chemistry
Screen printing
Silk
Spatial resolution
Substrates
Supercapacitors
title Robust and Flexible Micropatterned Electrodes and Micro‐Supercapacitors in Graphene–Silk Biopapers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Flexible%20Micropatterned%20Electrodes%20and%20Micro%E2%80%90Supercapacitors%20in%20Graphene%E2%80%93Silk%20Biopapers&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ma,%20Ruilong&rft.date=2018-12-01&rft.volume=5&rft.issue=24&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201801203&rft_dat=%3Cproquest_cross%3E2158484983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158484983&rft_id=info:pmid/&rfr_iscdi=true