Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives

Swarm intelligence (SI) is a research field which has recently attracted the attention of several scientific communities. An SI approach tries to characterize the collective behavior of animal or insect groups to build a search strategy. These methods consider biological systems, which can be modele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-29
Hauptverfasser: Zaldivar, Daniel, Fausto, Fernando, Cuevas, Erik, Luque-Chang, Alberto, Pérez-Cisneros, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Zaldivar, Daniel
Fausto, Fernando
Cuevas, Erik
Luque-Chang, Alberto
Pérez-Cisneros, Marco
description Swarm intelligence (SI) is a research field which has recently attracted the attention of several scientific communities. An SI approach tries to characterize the collective behavior of animal or insect groups to build a search strategy. These methods consider biological systems, which can be modeled as optimization processes to a certain extent. The Social Spider Optimization (SSO) is a novel swarm algorithm that is based on the cooperative characteristics of the social spider. In SSO, search agents represent a set of spiders which collectively move according to the biological behavior of the colony. In most of SI algorithms, all individuals are modeled considering the same properties and behavior. In contrast, SSO defines two different search agents: male and female. Therefore, according to the gender, each individual is conducted by using a different evolutionary operation which emulates its biological role in the colony. This individual categorization allows reducing critical flaws present in several SI approaches such as incorrect exploration-exploitation balance and premature convergence. After its introduction, SSO has been modified and applied in several engineering domains. In this paper, the state of the art, improvements, and applications of the SSO are reviewed.
doi_str_mv 10.1155/2018/6843923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2158178938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158178938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-a6701fa17f9d40621110bcc5fd3294b0775bdc0b404fa2704243e1162ee9afc03</originalsourceid><addsrcrecordid>eNqF0MtLwzAcB_AgCs7pzbMUPLq63y9JX97G8AWTCVPwVtI0cRldW5NO0b_ezA529JQHH36PLyHnCNeIUTSmgOk4TjnLKDsgA4xiFkbIk0N_B8pDpOztmJw4twKgGGE6IItFI42ogkVrSmWDeduZtfkRnWnqYFK9N9Z0y_VN8NSURhv59-9GwaRtq_1L1GXwrKxrlezMp3Kn5EiLyqmz3Tkkr3e3L9OHcDa_f5xOZqFkMXShiBNALTDRWckhpogIhZSRLhnNeAFJEhWlhIID14ImwClnCjGmSmVCS2BDctnXbW3zsVGuy1fNxta-Ze63SzFJM5Z6NeqVtI1zVum8tWYt7HeOkG9jy7ex5bvYPL_q-dLUpfgy_-mLXitvlBZ7TSH1I7BfABh2EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158178938</pqid></control><display><type>article</type><title>Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zaldivar, Daniel ; Fausto, Fernando ; Cuevas, Erik ; Luque-Chang, Alberto ; Pérez-Cisneros, Marco</creator><contributor>Mussetta, Marco ; Marco Mussetta</contributor><creatorcontrib>Zaldivar, Daniel ; Fausto, Fernando ; Cuevas, Erik ; Luque-Chang, Alberto ; Pérez-Cisneros, Marco ; Mussetta, Marco ; Marco Mussetta</creatorcontrib><description>Swarm intelligence (SI) is a research field which has recently attracted the attention of several scientific communities. An SI approach tries to characterize the collective behavior of animal or insect groups to build a search strategy. These methods consider biological systems, which can be modeled as optimization processes to a certain extent. The Social Spider Optimization (SSO) is a novel swarm algorithm that is based on the cooperative characteristics of the social spider. In SSO, search agents represent a set of spiders which collectively move according to the biological behavior of the colony. In most of SI algorithms, all individuals are modeled considering the same properties and behavior. In contrast, SSO defines two different search agents: male and female. Therefore, according to the gender, each individual is conducted by using a different evolutionary operation which emulates its biological role in the colony. This individual categorization allows reducing critical flaws present in several SI approaches such as incorrect exploration-exploitation balance and premature convergence. After its introduction, SSO has been modified and applied in several engineering domains. In this paper, the state of the art, improvements, and applications of the SSO are reviewed.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/6843923</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Biological evolution ; Clustering ; Colonies ; Design ; Domains ; Engineering ; Females ; Gender ; Genetic algorithms ; Insects ; International conferences ; Mathematical problems ; Optimization ; Optimization algorithms ; Population ; Researchers ; Searching ; Swarm intelligence</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-29</ispartof><rights>Copyright © 2018 Alberto Luque-Chang et al.</rights><rights>Copyright © 2018 Alberto Luque-Chang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-a6701fa17f9d40621110bcc5fd3294b0775bdc0b404fa2704243e1162ee9afc03</citedby><cites>FETCH-LOGICAL-c360t-a6701fa17f9d40621110bcc5fd3294b0775bdc0b404fa2704243e1162ee9afc03</cites><orcidid>0000-0002-4358-6182 ; 0000-0002-0358-6049 ; 0000-0001-6493-0408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><contributor>Mussetta, Marco</contributor><contributor>Marco Mussetta</contributor><creatorcontrib>Zaldivar, Daniel</creatorcontrib><creatorcontrib>Fausto, Fernando</creatorcontrib><creatorcontrib>Cuevas, Erik</creatorcontrib><creatorcontrib>Luque-Chang, Alberto</creatorcontrib><creatorcontrib>Pérez-Cisneros, Marco</creatorcontrib><title>Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives</title><title>Mathematical problems in engineering</title><description>Swarm intelligence (SI) is a research field which has recently attracted the attention of several scientific communities. An SI approach tries to characterize the collective behavior of animal or insect groups to build a search strategy. These methods consider biological systems, which can be modeled as optimization processes to a certain extent. The Social Spider Optimization (SSO) is a novel swarm algorithm that is based on the cooperative characteristics of the social spider. In SSO, search agents represent a set of spiders which collectively move according to the biological behavior of the colony. In most of SI algorithms, all individuals are modeled considering the same properties and behavior. In contrast, SSO defines two different search agents: male and female. Therefore, according to the gender, each individual is conducted by using a different evolutionary operation which emulates its biological role in the colony. This individual categorization allows reducing critical flaws present in several SI approaches such as incorrect exploration-exploitation balance and premature convergence. After its introduction, SSO has been modified and applied in several engineering domains. In this paper, the state of the art, improvements, and applications of the SSO are reviewed.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biological evolution</subject><subject>Clustering</subject><subject>Colonies</subject><subject>Design</subject><subject>Domains</subject><subject>Engineering</subject><subject>Females</subject><subject>Gender</subject><subject>Genetic algorithms</subject><subject>Insects</subject><subject>International conferences</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Researchers</subject><subject>Searching</subject><subject>Swarm intelligence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MtLwzAcB_AgCs7pzbMUPLq63y9JX97G8AWTCVPwVtI0cRldW5NO0b_ezA529JQHH36PLyHnCNeIUTSmgOk4TjnLKDsgA4xiFkbIk0N_B8pDpOztmJw4twKgGGE6IItFI42ogkVrSmWDeduZtfkRnWnqYFK9N9Z0y_VN8NSURhv59-9GwaRtq_1L1GXwrKxrlezMp3Kn5EiLyqmz3Tkkr3e3L9OHcDa_f5xOZqFkMXShiBNALTDRWckhpogIhZSRLhnNeAFJEhWlhIID14ImwClnCjGmSmVCS2BDctnXbW3zsVGuy1fNxta-Ze63SzFJM5Z6NeqVtI1zVum8tWYt7HeOkG9jy7ex5bvYPL_q-dLUpfgy_-mLXitvlBZ7TSH1I7BfABh2EA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zaldivar, Daniel</creator><creator>Fausto, Fernando</creator><creator>Cuevas, Erik</creator><creator>Luque-Chang, Alberto</creator><creator>Pérez-Cisneros, Marco</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4358-6182</orcidid><orcidid>https://orcid.org/0000-0002-0358-6049</orcidid><orcidid>https://orcid.org/0000-0001-6493-0408</orcidid></search><sort><creationdate>20180101</creationdate><title>Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives</title><author>Zaldivar, Daniel ; Fausto, Fernando ; Cuevas, Erik ; Luque-Chang, Alberto ; Pérez-Cisneros, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-a6701fa17f9d40621110bcc5fd3294b0775bdc0b404fa2704243e1162ee9afc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biological evolution</topic><topic>Clustering</topic><topic>Colonies</topic><topic>Design</topic><topic>Domains</topic><topic>Engineering</topic><topic>Females</topic><topic>Gender</topic><topic>Genetic algorithms</topic><topic>Insects</topic><topic>International conferences</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Researchers</topic><topic>Searching</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaldivar, Daniel</creatorcontrib><creatorcontrib>Fausto, Fernando</creatorcontrib><creatorcontrib>Cuevas, Erik</creatorcontrib><creatorcontrib>Luque-Chang, Alberto</creatorcontrib><creatorcontrib>Pérez-Cisneros, Marco</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaldivar, Daniel</au><au>Fausto, Fernando</au><au>Cuevas, Erik</au><au>Luque-Chang, Alberto</au><au>Pérez-Cisneros, Marco</au><au>Mussetta, Marco</au><au>Marco Mussetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Swarm intelligence (SI) is a research field which has recently attracted the attention of several scientific communities. An SI approach tries to characterize the collective behavior of animal or insect groups to build a search strategy. These methods consider biological systems, which can be modeled as optimization processes to a certain extent. The Social Spider Optimization (SSO) is a novel swarm algorithm that is based on the cooperative characteristics of the social spider. In SSO, search agents represent a set of spiders which collectively move according to the biological behavior of the colony. In most of SI algorithms, all individuals are modeled considering the same properties and behavior. In contrast, SSO defines two different search agents: male and female. Therefore, according to the gender, each individual is conducted by using a different evolutionary operation which emulates its biological role in the colony. This individual categorization allows reducing critical flaws present in several SI approaches such as incorrect exploration-exploitation balance and premature convergence. After its introduction, SSO has been modified and applied in several engineering domains. In this paper, the state of the art, improvements, and applications of the SSO are reviewed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/6843923</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-4358-6182</orcidid><orcidid>https://orcid.org/0000-0002-0358-6049</orcidid><orcidid>https://orcid.org/0000-0001-6493-0408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-29
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2158178938
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Biological evolution
Clustering
Colonies
Design
Domains
Engineering
Females
Gender
Genetic algorithms
Insects
International conferences
Mathematical problems
Optimization
Optimization algorithms
Population
Researchers
Searching
Swarm intelligence
title Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Spider%20Optimization%20Algorithm:%20Modifications,%20Applications,%20and%20Perspectives&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zaldivar,%20Daniel&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/6843923&rft_dat=%3Cproquest_cross%3E2158178938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158178938&rft_id=info:pmid/&rfr_iscdi=true