ABC: A Big CAD Model Dataset For Geometric Deep Learning

We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Koch, Sebastian, Matveev, Albert, Jiang, Zhongshi, Williams, Francis, Artemov, Alexey, Burnaev, Evgeny, Alexa, Marc, Zorin, Denis, Panozzo, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Koch, Sebastian
Matveev, Albert
Jiang, Zhongshi
Williams, Francis
Artemov, Alexey
Burnaev, Evgeny
Alexa, Marc
Zorin, Denis
Panozzo, Daniele
description We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2158091547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158091547</sourcerecordid><originalsourceid>FETCH-proquest_journals_21580915473</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEnKK5XqVkB00M2dNPokEKTYlv_XwQ9wusO5CxahEGmiMsQVi73vOee4y1FKETGli_IAGoquhVJXcLUPGqAywXgKUFsHJ7IvCq67Q0U0wYWMG7ux3bDl0wye4l_XbFsfb-U5mZx9z-RD09vZjV9qMJWK71OZ5eK_6wPi4TN3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158091547</pqid></control><display><type>article</type><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><source>Free E- Journals</source><creator>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</creator><creatorcontrib>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</creatorcontrib><description>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>CAD ; Collection ; Computer aided design ; Datasets ; Deep learning ; Differential geometry ; Ground truth ; Segmentation</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Koch, Sebastian</creatorcontrib><creatorcontrib>Matveev, Albert</creatorcontrib><creatorcontrib>Jiang, Zhongshi</creatorcontrib><creatorcontrib>Williams, Francis</creatorcontrib><creatorcontrib>Artemov, Alexey</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Alexa, Marc</creatorcontrib><creatorcontrib>Zorin, Denis</creatorcontrib><creatorcontrib>Panozzo, Daniele</creatorcontrib><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><title>arXiv.org</title><description>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</description><subject>CAD</subject><subject>Collection</subject><subject>Computer aided design</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential geometry</subject><subject>Ground truth</subject><subject>Segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEnKK5XqVkB00M2dNPokEKTYlv_XwQ9wusO5CxahEGmiMsQVi73vOee4y1FKETGli_IAGoquhVJXcLUPGqAywXgKUFsHJ7IvCq67Q0U0wYWMG7ux3bDl0wye4l_XbFsfb-U5mZx9z-RD09vZjV9qMJWK71OZ5eK_6wPi4TN3</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Koch, Sebastian</creator><creator>Matveev, Albert</creator><creator>Jiang, Zhongshi</creator><creator>Williams, Francis</creator><creator>Artemov, Alexey</creator><creator>Burnaev, Evgeny</creator><creator>Alexa, Marc</creator><creator>Zorin, Denis</creator><creator>Panozzo, Daniele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190430</creationdate><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><author>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21580915473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAD</topic><topic>Collection</topic><topic>Computer aided design</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential geometry</topic><topic>Ground truth</topic><topic>Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Koch, Sebastian</creatorcontrib><creatorcontrib>Matveev, Albert</creatorcontrib><creatorcontrib>Jiang, Zhongshi</creatorcontrib><creatorcontrib>Williams, Francis</creatorcontrib><creatorcontrib>Artemov, Alexey</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Alexa, Marc</creatorcontrib><creatorcontrib>Zorin, Denis</creatorcontrib><creatorcontrib>Panozzo, Daniele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Sebastian</au><au>Matveev, Albert</au><au>Jiang, Zhongshi</au><au>Williams, Francis</au><au>Artemov, Alexey</au><au>Burnaev, Evgeny</au><au>Alexa, Marc</au><au>Zorin, Denis</au><au>Panozzo, Daniele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ABC: A Big CAD Model Dataset For Geometric Deep Learning</atitle><jtitle>arXiv.org</jtitle><date>2019-04-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2158091547
source Free E- Journals
subjects CAD
Collection
Computer aided design
Datasets
Deep learning
Differential geometry
Ground truth
Segmentation
title ABC: A Big CAD Model Dataset For Geometric Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ABC:%20A%20Big%20CAD%20Model%20Dataset%20For%20Geometric%20Deep%20Learning&rft.jtitle=arXiv.org&rft.au=Koch,%20Sebastian&rft.date=2019-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2158091547%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158091547&rft_id=info:pmid/&rfr_iscdi=true