ABC: A Big CAD Model Dataset For Geometric Deep Learning
We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Koch, Sebastian Matveev, Albert Jiang, Zhongshi Williams, Francis Artemov, Alexey Burnaev, Evgeny Alexa, Marc Zorin, Denis Panozzo, Daniele |
description | We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2158091547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158091547</sourcerecordid><originalsourceid>FETCH-proquest_journals_21580915473</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEnKK5XqVkB00M2dNPokEKTYlv_XwQ9wusO5CxahEGmiMsQVi73vOee4y1FKETGli_IAGoquhVJXcLUPGqAywXgKUFsHJ7IvCq67Q0U0wYWMG7ux3bDl0wye4l_XbFsfb-U5mZx9z-RD09vZjV9qMJWK71OZ5eK_6wPi4TN3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158091547</pqid></control><display><type>article</type><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><source>Free E- Journals</source><creator>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</creator><creatorcontrib>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</creatorcontrib><description>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>CAD ; Collection ; Computer aided design ; Datasets ; Deep learning ; Differential geometry ; Ground truth ; Segmentation</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Koch, Sebastian</creatorcontrib><creatorcontrib>Matveev, Albert</creatorcontrib><creatorcontrib>Jiang, Zhongshi</creatorcontrib><creatorcontrib>Williams, Francis</creatorcontrib><creatorcontrib>Artemov, Alexey</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Alexa, Marc</creatorcontrib><creatorcontrib>Zorin, Denis</creatorcontrib><creatorcontrib>Panozzo, Daniele</creatorcontrib><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><title>arXiv.org</title><description>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</description><subject>CAD</subject><subject>Collection</subject><subject>Computer aided design</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Differential geometry</subject><subject>Ground truth</subject><subject>Segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEnKK5XqVkB00M2dNPokEKTYlv_XwQ9wusO5CxahEGmiMsQVi73vOee4y1FKETGli_IAGoquhVJXcLUPGqAywXgKUFsHJ7IvCq67Q0U0wYWMG7ux3bDl0wye4l_XbFsfb-U5mZx9z-RD09vZjV9qMJWK71OZ5eK_6wPi4TN3</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Koch, Sebastian</creator><creator>Matveev, Albert</creator><creator>Jiang, Zhongshi</creator><creator>Williams, Francis</creator><creator>Artemov, Alexey</creator><creator>Burnaev, Evgeny</creator><creator>Alexa, Marc</creator><creator>Zorin, Denis</creator><creator>Panozzo, Daniele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190430</creationdate><title>ABC: A Big CAD Model Dataset For Geometric Deep Learning</title><author>Koch, Sebastian ; Matveev, Albert ; Jiang, Zhongshi ; Williams, Francis ; Artemov, Alexey ; Burnaev, Evgeny ; Alexa, Marc ; Zorin, Denis ; Panozzo, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21580915473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAD</topic><topic>Collection</topic><topic>Computer aided design</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Differential geometry</topic><topic>Ground truth</topic><topic>Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Koch, Sebastian</creatorcontrib><creatorcontrib>Matveev, Albert</creatorcontrib><creatorcontrib>Jiang, Zhongshi</creatorcontrib><creatorcontrib>Williams, Francis</creatorcontrib><creatorcontrib>Artemov, Alexey</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Alexa, Marc</creatorcontrib><creatorcontrib>Zorin, Denis</creatorcontrib><creatorcontrib>Panozzo, Daniele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Sebastian</au><au>Matveev, Albert</au><au>Jiang, Zhongshi</au><au>Williams, Francis</au><au>Artemov, Alexey</au><au>Burnaev, Evgeny</au><au>Alexa, Marc</au><au>Zorin, Denis</au><au>Panozzo, Daniele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ABC: A Big CAD Model Dataset For Geometric Deep Learning</atitle><jtitle>arXiv.org</jtitle><date>2019-04-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2158091547 |
source | Free E- Journals |
subjects | CAD Collection Computer aided design Datasets Deep learning Differential geometry Ground truth Segmentation |
title | ABC: A Big CAD Model Dataset For Geometric Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ABC:%20A%20Big%20CAD%20Model%20Dataset%20For%20Geometric%20Deep%20Learning&rft.jtitle=arXiv.org&rft.au=Koch,%20Sebastian&rft.date=2019-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2158091547%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158091547&rft_id=info:pmid/&rfr_iscdi=true |