Anti-steganalysis for image on convolutional neural networks

Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-02, Vol.79 (7-8), p.4315-4331
Hauptverfasser: Li, Shiyu, Ye, Dengpan, Jiang, Shunzhi, Liu, Changrui, Niu, Xiaoguang, Luo, Xiangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4331
container_issue 7-8
container_start_page 4315
container_title Multimedia tools and applications
container_volume 79
creator Li, Shiyu
Ye, Dengpan
Jiang, Shunzhi
Liu, Changrui
Niu, Xiaoguang
Luo, Xiangyang
description Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.
doi_str_mv 10.1007/s11042-018-7046-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2158058302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158058302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZZPNR8FKKX1DwoueQZpOytW5qsqv0vzd1BU-eZmB-7_HmEXKJcI0A6iYjQs0ooKYKaknlEZmgUJwqxfC47FwDVQLwlJzlvAFAKVg9Ibfzrm9p7v3adna7z22uQkxV-27Xvopd5WL3GbdD38Zyrjo_pJ_Rf8X0ls_JSbDb7C9-55S83t-9LB7p8vnhaTFfUsdR9lTLAGLmcLYSdcNKRLVStfCWgaiV87IRDQfHG1mAoK0LNnAE72YaG-5Zw6fkavTdpfgx-NybTRxSCZQNQ6FBaA6sUDhSLsWckw9ml8ofaW8QzKEkM5ZkSgJzKMnIomGjJhe2W_v05_y_6BtcCWmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158058302</pqid></control><display><type>article</type><title>Anti-steganalysis for image on convolutional neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</creator><creatorcontrib>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</creatorcontrib><description>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-7046-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Evolutionary algorithms ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-02, Vol.79 (7-8), p.4315-4331</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</citedby><cites>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-7046-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-7046-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><creatorcontrib>Jiang, Shunzhi</creatorcontrib><creatorcontrib>Liu, Changrui</creatorcontrib><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Luo, Xiangyang</creatorcontrib><title>Anti-steganalysis for image on convolutional neural networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Evolutionary algorithms</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZZPNR8FKKX1DwoueQZpOytW5qsqv0vzd1BU-eZmB-7_HmEXKJcI0A6iYjQs0ooKYKaknlEZmgUJwqxfC47FwDVQLwlJzlvAFAKVg9Ibfzrm9p7v3adna7z22uQkxV-27Xvopd5WL3GbdD38Zyrjo_pJ_Rf8X0ls_JSbDb7C9-55S83t-9LB7p8vnhaTFfUsdR9lTLAGLmcLYSdcNKRLVStfCWgaiV87IRDQfHG1mAoK0LNnAE72YaG-5Zw6fkavTdpfgx-NybTRxSCZQNQ6FBaA6sUDhSLsWckw9ml8ofaW8QzKEkM5ZkSgJzKMnIomGjJhe2W_v05_y_6BtcCWmi</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Li, Shiyu</creator><creator>Ye, Dengpan</creator><creator>Jiang, Shunzhi</creator><creator>Liu, Changrui</creator><creator>Niu, Xiaoguang</creator><creator>Luo, Xiangyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Anti-steganalysis for image on convolutional neural networks</title><author>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Evolutionary algorithms</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><creatorcontrib>Jiang, Shunzhi</creatorcontrib><creatorcontrib>Liu, Changrui</creatorcontrib><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Luo, Xiangyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiyu</au><au>Ye, Dengpan</au><au>Jiang, Shunzhi</au><au>Liu, Changrui</au><au>Niu, Xiaoguang</au><au>Luo, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-steganalysis for image on convolutional neural networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>79</volume><issue>7-8</issue><spage>4315</spage><epage>4331</epage><pages>4315-4331</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-7046-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-02, Vol.79 (7-8), p.4315-4331
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2158058302
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Evolutionary algorithms
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
title Anti-steganalysis for image on convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-steganalysis%20for%20image%20on%20convolutional%20neural%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Li,%20Shiyu&rft.date=2020-02-01&rft.volume=79&rft.issue=7-8&rft.spage=4315&rft.epage=4331&rft.pages=4315-4331&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-7046-6&rft_dat=%3Cproquest_cross%3E2158058302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158058302&rft_id=info:pmid/&rfr_iscdi=true