Anti-steganalysis for image on convolutional neural networks
Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Ba...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-02, Vol.79 (7-8), p.4315-4331 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4331 |
---|---|
container_issue | 7-8 |
container_start_page | 4315 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Li, Shiyu Ye, Dengpan Jiang, Shunzhi Liu, Changrui Niu, Xiaoguang Luo, Xiangyang |
description | Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis. |
doi_str_mv | 10.1007/s11042-018-7046-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2158058302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158058302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZZPNR8FKKX1DwoueQZpOytW5qsqv0vzd1BU-eZmB-7_HmEXKJcI0A6iYjQs0ooKYKaknlEZmgUJwqxfC47FwDVQLwlJzlvAFAKVg9Ibfzrm9p7v3adna7z22uQkxV-27Xvopd5WL3GbdD38Zyrjo_pJ_Rf8X0ls_JSbDb7C9-55S83t-9LB7p8vnhaTFfUsdR9lTLAGLmcLYSdcNKRLVStfCWgaiV87IRDQfHG1mAoK0LNnAE72YaG-5Zw6fkavTdpfgx-NybTRxSCZQNQ6FBaA6sUDhSLsWckw9ml8ofaW8QzKEkM5ZkSgJzKMnIomGjJhe2W_v05_y_6BtcCWmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158058302</pqid></control><display><type>article</type><title>Anti-steganalysis for image on convolutional neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</creator><creatorcontrib>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</creatorcontrib><description>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-7046-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Evolutionary algorithms ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-02, Vol.79 (7-8), p.4315-4331</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</citedby><cites>FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-7046-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-7046-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><creatorcontrib>Jiang, Shunzhi</creatorcontrib><creatorcontrib>Liu, Changrui</creatorcontrib><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Luo, Xiangyang</creatorcontrib><title>Anti-steganalysis for image on convolutional neural networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Evolutionary algorithms</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LAzEQxYMoWKt_gLcFz9GZZPNR8FKKX1DwoueQZpOytW5qsqv0vzd1BU-eZmB-7_HmEXKJcI0A6iYjQs0ooKYKaknlEZmgUJwqxfC47FwDVQLwlJzlvAFAKVg9Ibfzrm9p7v3adna7z22uQkxV-27Xvopd5WL3GbdD38Zyrjo_pJ_Rf8X0ls_JSbDb7C9-55S83t-9LB7p8vnhaTFfUsdR9lTLAGLmcLYSdcNKRLVStfCWgaiV87IRDQfHG1mAoK0LNnAE72YaG-5Zw6fkavTdpfgx-NybTRxSCZQNQ6FBaA6sUDhSLsWckw9ml8ofaW8QzKEkM5ZkSgJzKMnIomGjJhe2W_v05_y_6BtcCWmi</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Li, Shiyu</creator><creator>Ye, Dengpan</creator><creator>Jiang, Shunzhi</creator><creator>Liu, Changrui</creator><creator>Niu, Xiaoguang</creator><creator>Luo, Xiangyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Anti-steganalysis for image on convolutional neural networks</title><author>Li, Shiyu ; Ye, Dengpan ; Jiang, Shunzhi ; Liu, Changrui ; Niu, Xiaoguang ; Luo, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86f059c19b54d20187b745ea20547ce6d5d30c3d69b5f8acfaf310ec981d3e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Evolutionary algorithms</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><creatorcontrib>Jiang, Shunzhi</creatorcontrib><creatorcontrib>Liu, Changrui</creatorcontrib><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Luo, Xiangyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiyu</au><au>Ye, Dengpan</au><au>Jiang, Shunzhi</au><au>Liu, Changrui</au><au>Niu, Xiaoguang</au><au>Luo, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-steganalysis for image on convolutional neural networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>79</volume><issue>7-8</issue><spage>4315</spage><epage>4331</epage><pages>4315-4331</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Nowadays, convolutional neural network (CNN) based steganalysis methods achieved great performance. While those methods are also facing security problems. In this paper, we proposed an attack scheme aiming at CNN based steganalyzer including two different attack methods 1) the LSB-Jstego Gradient Based Attack; 2) LSB-Jstego Evolutionary Algorithms Based Attack. The experiment results show that the attack strategies could achieve 96.02% and 90.25% success ratio separately on the target CNN. The proposed attack scheme is an effective way to fool the CNN based steganalyzer and in addition demonstrates the vulnerability of the neural networks in steganalysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-7046-6</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-02, Vol.79 (7-8), p.4315-4331 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2158058302 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Evolutionary algorithms Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems |
title | Anti-steganalysis for image on convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-steganalysis%20for%20image%20on%20convolutional%20neural%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Li,%20Shiyu&rft.date=2020-02-01&rft.volume=79&rft.issue=7-8&rft.spage=4315&rft.epage=4331&rft.pages=4315-4331&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-7046-6&rft_dat=%3Cproquest_cross%3E2158058302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158058302&rft_id=info:pmid/&rfr_iscdi=true |