Gaseous Oxides and Olfactory Computation
The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide (CO) are prominent and universal components of the array of neurotransmitters found in olfactory information processing systems. These highly mobile communication compounds have effects on both second messenger signaling and directl...
Gespeichert in:
Veröffentlicht in: | American zoologist 2001-04, Vol.41 (2), p.332-345 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 2 |
container_start_page | 332 |
container_title | American zoologist |
container_volume | 41 |
creator | Gelperin, A. Kao, J. P. Y. Cooke, I. R. C. |
description | The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide (CO) are prominent and universal components of the array of neurotransmitters found in olfactory information processing systems. These highly mobile communication compounds have effects on both second messenger signaling and directly on ion channel gating in olfactory receptors and central synaptic processing of receptor input. Olfactory systems are notable for the plasticity of their synaptic connections, revealed both in higher-order associative learning mechanisms using odor cues and developmental plasticity operating to maintain function during addition of new olfactory receptors and new central olfactory interneurons. We use the macrosmatic terrestrial mollusk Limax maximus to investigate the role of NO and CO in the dynamics of central odor processing and odor learning. The major central site of odor processing in the Limax CNS is the procerebral (PC) lobe of the cerebral ganglion, which displays oscillatory dynamics of its local field potential and periodic activity waves modulated by odor input. The bursting neurons in the PC lobe are dependent on local NO synthesis for maintenance of bursting activity and wave propagation. New data show that these bursting PC interneurons are also stimulated by carbon monoxide. The synthesizing enzyme for carbon monoxide, heme oxygenase 2, is present in the neuropil of the PC lobe. Since the PC lobe exhibits two forms of synaptic plasticity related to both associative odor learning and continual connection of new receptors and interneurons, the use of multiple gaseous neurotransmitters may be required to enable these multiple forms of synaptic plasticity. |
doi_str_mv | 10.1093/icb/41.2.332 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_215800042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3884423</jstor_id><sourcerecordid>3884423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1612-710c806e083d3dfb14f44d8265d289b9bcb364c4c225597a19863a13043da0743</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKc3jx6KJw92e8lL0vQoUzdx0ovK2CWkaQud2zqTFrb_3ozKTu_B9_F7vB8htxRGFFIc1zYfczpiI0R2RgZUiCROgOH5cecQdomX5Mr7FUCAQAfkYWp82XQ-yvZ1UfrIbIsoW1fGto07RJNms-ta09bN9ppcVGbty5v_OSRfry-fk1k8z6Zvk6d5bKmkLE4oWAWyBIUFFlVOecV5oZgUBVNpnuY2R8ktt4wJkSaGpkqioQgcCwMJxyG573N3rvntSt_qVdO5bTipGRUKADgL0mMvWdd478pK71y9Me6gKehjFTpUoTnVTIcqgn7X6ysf3jq5qBQPYQHHPa59W-5P2LgfLRNMhJ4tllosls_fy_Rdf-AfNJpnfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215800042</pqid></control><display><type>article</type><title>Gaseous Oxides and Olfactory Computation</title><source>Jstor Complete Legacy</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>BioOne Complete</source><creator>Gelperin, A. ; Kao, J. P. Y. ; Cooke, I. R. C.</creator><creatorcontrib>Gelperin, A. ; Kao, J. P. Y. ; Cooke, I. R. C.</creatorcontrib><description>The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide (CO) are prominent and universal components of the array of neurotransmitters found in olfactory information processing systems. These highly mobile communication compounds have effects on both second messenger signaling and directly on ion channel gating in olfactory receptors and central synaptic processing of receptor input. Olfactory systems are notable for the plasticity of their synaptic connections, revealed both in higher-order associative learning mechanisms using odor cues and developmental plasticity operating to maintain function during addition of new olfactory receptors and new central olfactory interneurons. We use the macrosmatic terrestrial mollusk Limax maximus to investigate the role of NO and CO in the dynamics of central odor processing and odor learning. The major central site of odor processing in the Limax CNS is the procerebral (PC) lobe of the cerebral ganglion, which displays oscillatory dynamics of its local field potential and periodic activity waves modulated by odor input. The bursting neurons in the PC lobe are dependent on local NO synthesis for maintenance of bursting activity and wave propagation. New data show that these bursting PC interneurons are also stimulated by carbon monoxide. The synthesizing enzyme for carbon monoxide, heme oxygenase 2, is present in the neuropil of the PC lobe. Since the PC lobe exhibits two forms of synaptic plasticity related to both associative odor learning and continual connection of new receptors and interneurons, the use of multiple gaseous neurotransmitters may be required to enable these multiple forms of synaptic plasticity.</description><identifier>ISSN: 1540-7063</identifier><identifier>ISSN: 0003-1569</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/41.2.332</identifier><identifier>CODEN: AMZOAF</identifier><language>eng</language><publisher>Chicago: Oxford University Press</publisher><subject>Behavioral neuroscience ; Carbon monoxide ; Enzymes ; Ganglia ; Mollusks ; Neurons ; Neuropil ; Neuroscience ; Nitric Oxide in the Invertebrates: Comparative Physiology and Diverse Functions ; Odors ; Olfactory perception ; Oxides ; Sensory perception ; Wave propagation</subject><ispartof>American zoologist, 2001-04, Vol.41 (2), p.332-345</ispartof><rights>Copyright 2001 The Society for Integrative and Comparative Biology</rights><rights>Copyright Society for Integrative and Comparative Biology Apr 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1612-710c806e083d3dfb14f44d8265d289b9bcb364c4c225597a19863a13043da0743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3884423$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3884423$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Gelperin, A.</creatorcontrib><creatorcontrib>Kao, J. P. Y.</creatorcontrib><creatorcontrib>Cooke, I. R. C.</creatorcontrib><title>Gaseous Oxides and Olfactory Computation</title><title>American zoologist</title><addtitle>Integr. Comp. Biol</addtitle><description>The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide (CO) are prominent and universal components of the array of neurotransmitters found in olfactory information processing systems. These highly mobile communication compounds have effects on both second messenger signaling and directly on ion channel gating in olfactory receptors and central synaptic processing of receptor input. Olfactory systems are notable for the plasticity of their synaptic connections, revealed both in higher-order associative learning mechanisms using odor cues and developmental plasticity operating to maintain function during addition of new olfactory receptors and new central olfactory interneurons. We use the macrosmatic terrestrial mollusk Limax maximus to investigate the role of NO and CO in the dynamics of central odor processing and odor learning. The major central site of odor processing in the Limax CNS is the procerebral (PC) lobe of the cerebral ganglion, which displays oscillatory dynamics of its local field potential and periodic activity waves modulated by odor input. The bursting neurons in the PC lobe are dependent on local NO synthesis for maintenance of bursting activity and wave propagation. New data show that these bursting PC interneurons are also stimulated by carbon monoxide. The synthesizing enzyme for carbon monoxide, heme oxygenase 2, is present in the neuropil of the PC lobe. Since the PC lobe exhibits two forms of synaptic plasticity related to both associative odor learning and continual connection of new receptors and interneurons, the use of multiple gaseous neurotransmitters may be required to enable these multiple forms of synaptic plasticity.</description><subject>Behavioral neuroscience</subject><subject>Carbon monoxide</subject><subject>Enzymes</subject><subject>Ganglia</subject><subject>Mollusks</subject><subject>Neurons</subject><subject>Neuropil</subject><subject>Neuroscience</subject><subject>Nitric Oxide in the Invertebrates: Comparative Physiology and Diverse Functions</subject><subject>Odors</subject><subject>Olfactory perception</subject><subject>Oxides</subject><subject>Sensory perception</subject><subject>Wave propagation</subject><issn>1540-7063</issn><issn>0003-1569</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKc3jx6KJw92e8lL0vQoUzdx0ovK2CWkaQud2zqTFrb_3ozKTu_B9_F7vB8htxRGFFIc1zYfczpiI0R2RgZUiCROgOH5cecQdomX5Mr7FUCAQAfkYWp82XQ-yvZ1UfrIbIsoW1fGto07RJNms-ta09bN9ppcVGbty5v_OSRfry-fk1k8z6Zvk6d5bKmkLE4oWAWyBIUFFlVOecV5oZgUBVNpnuY2R8ktt4wJkSaGpkqioQgcCwMJxyG573N3rvntSt_qVdO5bTipGRUKADgL0mMvWdd478pK71y9Me6gKehjFTpUoTnVTIcqgn7X6ysf3jq5qBQPYQHHPa59W-5P2LgfLRNMhJ4tllosls_fy_Rdf-AfNJpnfg</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Gelperin, A.</creator><creator>Kao, J. P. Y.</creator><creator>Cooke, I. R. C.</creator><general>Oxford University Press</general><general>Society for Integrative and Comparative Biology</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>200104</creationdate><title>Gaseous Oxides and Olfactory Computation</title><author>Gelperin, A. ; Kao, J. P. Y. ; Cooke, I. R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1612-710c806e083d3dfb14f44d8265d289b9bcb364c4c225597a19863a13043da0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Behavioral neuroscience</topic><topic>Carbon monoxide</topic><topic>Enzymes</topic><topic>Ganglia</topic><topic>Mollusks</topic><topic>Neurons</topic><topic>Neuropil</topic><topic>Neuroscience</topic><topic>Nitric Oxide in the Invertebrates: Comparative Physiology and Diverse Functions</topic><topic>Odors</topic><topic>Olfactory perception</topic><topic>Oxides</topic><topic>Sensory perception</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelperin, A.</creatorcontrib><creatorcontrib>Kao, J. P. Y.</creatorcontrib><creatorcontrib>Cooke, I. R. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>American zoologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelperin, A.</au><au>Kao, J. P. Y.</au><au>Cooke, I. R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaseous Oxides and Olfactory Computation</atitle><jtitle>American zoologist</jtitle><addtitle>Integr. Comp. Biol</addtitle><date>2001-04</date><risdate>2001</risdate><volume>41</volume><issue>2</issue><spage>332</spage><epage>345</epage><pages>332-345</pages><issn>1540-7063</issn><issn>0003-1569</issn><eissn>1557-7023</eissn><coden>AMZOAF</coden><abstract>The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide (CO) are prominent and universal components of the array of neurotransmitters found in olfactory information processing systems. These highly mobile communication compounds have effects on both second messenger signaling and directly on ion channel gating in olfactory receptors and central synaptic processing of receptor input. Olfactory systems are notable for the plasticity of their synaptic connections, revealed both in higher-order associative learning mechanisms using odor cues and developmental plasticity operating to maintain function during addition of new olfactory receptors and new central olfactory interneurons. We use the macrosmatic terrestrial mollusk Limax maximus to investigate the role of NO and CO in the dynamics of central odor processing and odor learning. The major central site of odor processing in the Limax CNS is the procerebral (PC) lobe of the cerebral ganglion, which displays oscillatory dynamics of its local field potential and periodic activity waves modulated by odor input. The bursting neurons in the PC lobe are dependent on local NO synthesis for maintenance of bursting activity and wave propagation. New data show that these bursting PC interneurons are also stimulated by carbon monoxide. The synthesizing enzyme for carbon monoxide, heme oxygenase 2, is present in the neuropil of the PC lobe. Since the PC lobe exhibits two forms of synaptic plasticity related to both associative odor learning and continual connection of new receptors and interneurons, the use of multiple gaseous neurotransmitters may be required to enable these multiple forms of synaptic plasticity.</abstract><cop>Chicago</cop><pub>Oxford University Press</pub><doi>10.1093/icb/41.2.332</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7063 |
ispartof | American zoologist, 2001-04, Vol.41 (2), p.332-345 |
issn | 1540-7063 0003-1569 1557-7023 |
language | eng |
recordid | cdi_proquest_journals_215800042 |
source | Jstor Complete Legacy; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library; BioOne Complete |
subjects | Behavioral neuroscience Carbon monoxide Enzymes Ganglia Mollusks Neurons Neuropil Neuroscience Nitric Oxide in the Invertebrates: Comparative Physiology and Diverse Functions Odors Olfactory perception Oxides Sensory perception Wave propagation |
title | Gaseous Oxides and Olfactory Computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaseous%20Oxides%20and%20Olfactory%20Computation&rft.jtitle=American%20zoologist&rft.au=Gelperin,%20A.&rft.date=2001-04&rft.volume=41&rft.issue=2&rft.spage=332&rft.epage=345&rft.pages=332-345&rft.issn=1540-7063&rft.eissn=1557-7023&rft.coden=AMZOAF&rft_id=info:doi/10.1093/icb/41.2.332&rft_dat=%3Cjstor_proqu%3E3884423%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215800042&rft_id=info:pmid/&rft_jstor_id=3884423&rfr_iscdi=true |