Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics
Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streami...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2019-01, Vol.131 (1), p.165-169 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 165 |
container_title | Angewandte Chemie |
container_volume | 131 |
creator | Lu, Yao de Vries, Wilke C. Overeem, Nico J. Duan, Xuexin Zhang, Hongxiang Zhang, Hao Pang, Wei Ravoo, Bart Jan Huskens, Jurriaan |
description | Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into and from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores, with diameters on the order of 100 nm, in the vesicle membranes. This provides a non‐invasive method to control material exchange across membranes of different types of vesicles, which could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.
Gigahertz‐Schallwellen aus einem nanoelektromechanischen Resonator kontrollieren den Stoffaustausch durch Vesikel, indem sie die reversible Bildung von Nanoporen in der Vesikelmembran induzieren. |
doi_str_mv | 10.1002/ange.201810181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157946584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157946584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-b67ca558e89919da337853941517bc4f77ca3c937a0cf2e4c2225af5eb02ed683</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwHPnUmaNM1xjLkJQ0E3ryFNX2dHbGbSIvOvt3WiRw-PB-_9vvc9PoSuKZlQQtitabYwYYTmdKgTNKKC0SSVQp6iESGcJznj6hxdxLgjhGRMqhF6nvmmDd45KLFpSrzuGlM4wCtvyrrZfs-ewIGJgH2FXyDW1kHExQFv4gAs6q15hdB-4qn1XWxrGy_RWWVchKufPkabu_l6tkxWj4v72XSVWEb6z4pMWiNEDrlSVJUmTWUuUsWpoLKwvJL9OrUqlYbYigG3jDFhKgEFYVBmeTpGN8e7--DfO4it3vkuNL2lZlRIxTOR856aHCkbfIwBKr0P9ZsJB02JHoLTQ3D6N7heoI6Cj9rB4R9aTx8W8z_tFxJ3cRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157946584</pqid></control><display><type>article</type><title>Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lu, Yao ; de Vries, Wilke C. ; Overeem, Nico J. ; Duan, Xuexin ; Zhang, Hongxiang ; Zhang, Hao ; Pang, Wei ; Ravoo, Bart Jan ; Huskens, Jurriaan</creator><creatorcontrib>Lu, Yao ; de Vries, Wilke C. ; Overeem, Nico J. ; Duan, Xuexin ; Zhang, Hongxiang ; Zhang, Hao ; Pang, Wei ; Ravoo, Bart Jan ; Huskens, Jurriaan</creatorcontrib><description>Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into and from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores, with diameters on the order of 100 nm, in the vesicle membranes. This provides a non‐invasive method to control material exchange across membranes of different types of vesicles, which could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.
Gigahertz‐Schallwellen aus einem nanoelektromechanischen Resonator kontrollieren den Stoffaustausch durch Vesikel, indem sie die reversible Bildung von Nanoporen in der Vesikelmembran induzieren.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201810181</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic streaming ; Acoustics ; Chemistry ; Deformation ; Drug delivery ; Drug delivery systems ; Exchanging ; Gigahertz-Beschallung ; Indoor environments ; Kontrollierte Beladung ; Kontrollierte Freisetzung ; Membranes ; Microreactors ; Porosity ; Shear stress ; Stability ; Streaming ; Substrates ; Transiente Nanoporen ; Vesicles ; Vesikel</subject><ispartof>Angewandte Chemie, 2019-01, Vol.131 (1), p.165-169</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2021-b67ca558e89919da337853941517bc4f77ca3c937a0cf2e4c2225af5eb02ed683</citedby><cites>FETCH-LOGICAL-c2021-b67ca558e89919da337853941517bc4f77ca3c937a0cf2e4c2225af5eb02ed683</cites><orcidid>0000-0002-4596-9179 ; 0000-0003-2202-7485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201810181$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201810181$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Lu, Yao</creatorcontrib><creatorcontrib>de Vries, Wilke C.</creatorcontrib><creatorcontrib>Overeem, Nico J.</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><creatorcontrib>Zhang, Hongxiang</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Ravoo, Bart Jan</creatorcontrib><creatorcontrib>Huskens, Jurriaan</creatorcontrib><title>Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics</title><title>Angewandte Chemie</title><description>Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into and from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores, with diameters on the order of 100 nm, in the vesicle membranes. This provides a non‐invasive method to control material exchange across membranes of different types of vesicles, which could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.
Gigahertz‐Schallwellen aus einem nanoelektromechanischen Resonator kontrollieren den Stoffaustausch durch Vesikel, indem sie die reversible Bildung von Nanoporen in der Vesikelmembran induzieren.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Chemistry</subject><subject>Deformation</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Exchanging</subject><subject>Gigahertz-Beschallung</subject><subject>Indoor environments</subject><subject>Kontrollierte Beladung</subject><subject>Kontrollierte Freisetzung</subject><subject>Membranes</subject><subject>Microreactors</subject><subject>Porosity</subject><subject>Shear stress</subject><subject>Stability</subject><subject>Streaming</subject><subject>Substrates</subject><subject>Transiente Nanoporen</subject><subject>Vesicles</subject><subject>Vesikel</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMFLwzAUxoMoOKdXzwHPnUmaNM1xjLkJQ0E3ryFNX2dHbGbSIvOvt3WiRw-PB-_9vvc9PoSuKZlQQtitabYwYYTmdKgTNKKC0SSVQp6iESGcJznj6hxdxLgjhGRMqhF6nvmmDd45KLFpSrzuGlM4wCtvyrrZfs-ewIGJgH2FXyDW1kHExQFv4gAs6q15hdB-4qn1XWxrGy_RWWVchKufPkabu_l6tkxWj4v72XSVWEb6z4pMWiNEDrlSVJUmTWUuUsWpoLKwvJL9OrUqlYbYigG3jDFhKgEFYVBmeTpGN8e7--DfO4it3vkuNL2lZlRIxTOR856aHCkbfIwBKr0P9ZsJB02JHoLTQ3D6N7heoI6Cj9rB4R9aTx8W8z_tFxJ3cRI</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Lu, Yao</creator><creator>de Vries, Wilke C.</creator><creator>Overeem, Nico J.</creator><creator>Duan, Xuexin</creator><creator>Zhang, Hongxiang</creator><creator>Zhang, Hao</creator><creator>Pang, Wei</creator><creator>Ravoo, Bart Jan</creator><creator>Huskens, Jurriaan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4596-9179</orcidid><orcidid>https://orcid.org/0000-0003-2202-7485</orcidid></search><sort><creationdate>20190102</creationdate><title>Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics</title><author>Lu, Yao ; de Vries, Wilke C. ; Overeem, Nico J. ; Duan, Xuexin ; Zhang, Hongxiang ; Zhang, Hao ; Pang, Wei ; Ravoo, Bart Jan ; Huskens, Jurriaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-b67ca558e89919da337853941517bc4f77ca3c937a0cf2e4c2225af5eb02ed683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Chemistry</topic><topic>Deformation</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Exchanging</topic><topic>Gigahertz-Beschallung</topic><topic>Indoor environments</topic><topic>Kontrollierte Beladung</topic><topic>Kontrollierte Freisetzung</topic><topic>Membranes</topic><topic>Microreactors</topic><topic>Porosity</topic><topic>Shear stress</topic><topic>Stability</topic><topic>Streaming</topic><topic>Substrates</topic><topic>Transiente Nanoporen</topic><topic>Vesicles</topic><topic>Vesikel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yao</creatorcontrib><creatorcontrib>de Vries, Wilke C.</creatorcontrib><creatorcontrib>Overeem, Nico J.</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><creatorcontrib>Zhang, Hongxiang</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Ravoo, Bart Jan</creatorcontrib><creatorcontrib>Huskens, Jurriaan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yao</au><au>de Vries, Wilke C.</au><au>Overeem, Nico J.</au><au>Duan, Xuexin</au><au>Zhang, Hongxiang</au><au>Zhang, Hao</au><au>Pang, Wei</au><au>Ravoo, Bart Jan</au><au>Huskens, Jurriaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics</atitle><jtitle>Angewandte Chemie</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>131</volume><issue>1</issue><spage>165</spage><epage>169</epage><pages>165-169</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Herein, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into and from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores, with diameters on the order of 100 nm, in the vesicle membranes. This provides a non‐invasive method to control material exchange across membranes of different types of vesicles, which could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.
Gigahertz‐Schallwellen aus einem nanoelektromechanischen Resonator kontrollieren den Stoffaustausch durch Vesikel, indem sie die reversible Bildung von Nanoporen in der Vesikelmembran induzieren.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201810181</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4596-9179</orcidid><orcidid>https://orcid.org/0000-0003-2202-7485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2019-01, Vol.131 (1), p.165-169 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2157946584 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acoustic streaming Acoustics Chemistry Deformation Drug delivery Drug delivery systems Exchanging Gigahertz-Beschallung Indoor environments Kontrollierte Beladung Kontrollierte Freisetzung Membranes Microreactors Porosity Shear stress Stability Streaming Substrates Transiente Nanoporen Vesicles Vesikel |
title | Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20and%20Tunable%20Loading%20and%20Release%20of%20Vesicles%20by%20Using%20Gigahertz%20Acoustics&rft.jtitle=Angewandte%20Chemie&rft.au=Lu,%20Yao&rft.date=2019-01-02&rft.volume=131&rft.issue=1&rft.spage=165&rft.epage=169&rft.pages=165-169&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201810181&rft_dat=%3Cproquest_cross%3E2157946584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157946584&rft_id=info:pmid/&rfr_iscdi=true |