Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators
This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the ma...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2018-12, Vol.23 (6), p.2870-2880 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2880 |
---|---|
container_issue | 6 |
container_start_page | 2870 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 23 |
creator | Lusty, Christopher Keogh, Patrick |
description | This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H _\infty-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure. |
doi_str_mv | 10.1109/TMECH.2018.2869023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2157910947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8456577</ieee_id><sourcerecordid>2157910947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfmf5rHUaYbbAg6xbeQpql01GYmmbhvb-umL_deDuccLj8ArjGaYIzU3Xo1K-YTgnA-IblQiNATMMKK4Qxh9nba3yinGWOUn4OLGDcIIYYRHgE7tan5cvC1KYNJje9g4bsUfAt9DQ28b913U7YOPvnkAyz3f8oervyuS66Ci36GzrTZczKDZ2XeO5caC_vm3aDES3BWmza6q-Meg5f72bqYZ8vHh0UxXWaWUpUyJaQliBBFa44Mqaxg1iliFHfEWWaxqAVFysiqtmUlqtpYyZGlQopcSC7pGNweerfBf-5cTHrjd8NrURPMpepBscFFDi4bfIzB1Xobmg8T9hojPcDUvzD1AFMfYfahm0Oocc79B3LGBZeS_gBWwHDz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157910947</pqid></control><display><type>article</type><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Lusty, Christopher ; Keogh, Patrick</creator><creatorcontrib>Lusty, Christopher ; Keogh, Patrick</creatorcontrib><description>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H <inline-formula><tex-math notation="LaTeX">_\infty</tex-math></inline-formula>-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2869023</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Actuators ; Closed loop system ; Control systems ; electromagnetics ; H infinity control ; Magnetic bearings ; Magnetic levitation ; Magnetic resonance ; rotating machines ; Rotating shafts ; Rotor speed ; Rotors ; Soft magnetic materials ; Stators ; Vibration control ; Vibrations</subject><ispartof>IEEE/ASME transactions on mechatronics, 2018-12, Vol.23 (6), p.2870-2880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</citedby><cites>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</cites><orcidid>0000-0002-6704-3254 ; 0000-0001-7959-0530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8456577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8456577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lusty, Christopher</creatorcontrib><creatorcontrib>Keogh, Patrick</creatorcontrib><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H <inline-formula><tex-math notation="LaTeX">_\infty</tex-math></inline-formula>-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</description><subject>Active control</subject><subject>Actuators</subject><subject>Closed loop system</subject><subject>Control systems</subject><subject>electromagnetics</subject><subject>H infinity control</subject><subject>Magnetic bearings</subject><subject>Magnetic levitation</subject><subject>Magnetic resonance</subject><subject>rotating machines</subject><subject>Rotating shafts</subject><subject>Rotor speed</subject><subject>Rotors</subject><subject>Soft magnetic materials</subject><subject>Stators</subject><subject>Vibration control</subject><subject>Vibrations</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfmf5rHUaYbbAg6xbeQpql01GYmmbhvb-umL_deDuccLj8ArjGaYIzU3Xo1K-YTgnA-IblQiNATMMKK4Qxh9nba3yinGWOUn4OLGDcIIYYRHgE7tan5cvC1KYNJje9g4bsUfAt9DQ28b913U7YOPvnkAyz3f8oervyuS66Ci36GzrTZczKDZ2XeO5caC_vm3aDES3BWmza6q-Meg5f72bqYZ8vHh0UxXWaWUpUyJaQliBBFa44Mqaxg1iliFHfEWWaxqAVFysiqtmUlqtpYyZGlQopcSC7pGNweerfBf-5cTHrjd8NrURPMpepBscFFDi4bfIzB1Xobmg8T9hojPcDUvzD1AFMfYfahm0Oocc79B3LGBZeS_gBWwHDz</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Lusty, Christopher</creator><creator>Keogh, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6704-3254</orcidid><orcidid>https://orcid.org/0000-0001-7959-0530</orcidid></search><sort><creationdate>201812</creationdate><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><author>Lusty, Christopher ; Keogh, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Closed loop system</topic><topic>Control systems</topic><topic>electromagnetics</topic><topic>H infinity control</topic><topic>Magnetic bearings</topic><topic>Magnetic levitation</topic><topic>Magnetic resonance</topic><topic>rotating machines</topic><topic>Rotating shafts</topic><topic>Rotor speed</topic><topic>Rotors</topic><topic>Soft magnetic materials</topic><topic>Stators</topic><topic>Vibration control</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lusty, Christopher</creatorcontrib><creatorcontrib>Keogh, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lusty, Christopher</au><au>Keogh, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2018-12</date><risdate>2018</risdate><volume>23</volume><issue>6</issue><spage>2870</spage><epage>2880</epage><pages>2870-2880</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H <inline-formula><tex-math notation="LaTeX">_\infty</tex-math></inline-formula>-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2869023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6704-3254</orcidid><orcidid>https://orcid.org/0000-0001-7959-0530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2018-12, Vol.23 (6), p.2870-2880 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2157910947 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Actuators Closed loop system Control systems electromagnetics H infinity control Magnetic bearings Magnetic levitation Magnetic resonance rotating machines Rotating shafts Rotor speed Rotors Soft magnetic materials Stators Vibration control Vibrations |
title | Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Vibration%20Control%20of%20a%20Flexible%20Rotor%20by%20Flexibly%20Mounted%20Internal-Stator%20Magnetic%20Actuators&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Lusty,%20Christopher&rft.date=2018-12&rft.volume=23&rft.issue=6&rft.spage=2870&rft.epage=2880&rft.pages=2870-2880&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2869023&rft_dat=%3Cproquest_RIE%3E2157910947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157910947&rft_id=info:pmid/&rft_ieee_id=8456577&rfr_iscdi=true |