Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators

This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2018-12, Vol.23 (6), p.2870-2880
Hauptverfasser: Lusty, Christopher, Keogh, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2880
container_issue 6
container_start_page 2870
container_title IEEE/ASME transactions on mechatronics
container_volume 23
creator Lusty, Christopher
Keogh, Patrick
description This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H _\infty-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.
doi_str_mv 10.1109/TMECH.2018.2869023
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2157910947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8456577</ieee_id><sourcerecordid>2157910947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfmf5rHUaYbbAg6xbeQpql01GYmmbhvb-umL_deDuccLj8ArjGaYIzU3Xo1K-YTgnA-IblQiNATMMKK4Qxh9nba3yinGWOUn4OLGDcIIYYRHgE7tan5cvC1KYNJje9g4bsUfAt9DQ28b913U7YOPvnkAyz3f8oervyuS66Ci36GzrTZczKDZ2XeO5caC_vm3aDES3BWmza6q-Meg5f72bqYZ8vHh0UxXWaWUpUyJaQliBBFa44Mqaxg1iliFHfEWWaxqAVFysiqtmUlqtpYyZGlQopcSC7pGNweerfBf-5cTHrjd8NrURPMpepBscFFDi4bfIzB1Xobmg8T9hojPcDUvzD1AFMfYfahm0Oocc79B3LGBZeS_gBWwHDz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157910947</pqid></control><display><type>article</type><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Lusty, Christopher ; Keogh, Patrick</creator><creatorcontrib>Lusty, Christopher ; Keogh, Patrick</creatorcontrib><description>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;_\infty&lt;/tex-math&gt;&lt;/inline-formula&gt;-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2869023</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Actuators ; Closed loop system ; Control systems ; electromagnetics ; H infinity control ; Magnetic bearings ; Magnetic levitation ; Magnetic resonance ; rotating machines ; Rotating shafts ; Rotor speed ; Rotors ; Soft magnetic materials ; Stators ; Vibration control ; Vibrations</subject><ispartof>IEEE/ASME transactions on mechatronics, 2018-12, Vol.23 (6), p.2870-2880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</citedby><cites>FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</cites><orcidid>0000-0002-6704-3254 ; 0000-0001-7959-0530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8456577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8456577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lusty, Christopher</creatorcontrib><creatorcontrib>Keogh, Patrick</creatorcontrib><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;_\infty&lt;/tex-math&gt;&lt;/inline-formula&gt;-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</description><subject>Active control</subject><subject>Actuators</subject><subject>Closed loop system</subject><subject>Control systems</subject><subject>electromagnetics</subject><subject>H infinity control</subject><subject>Magnetic bearings</subject><subject>Magnetic levitation</subject><subject>Magnetic resonance</subject><subject>rotating machines</subject><subject>Rotating shafts</subject><subject>Rotor speed</subject><subject>Rotors</subject><subject>Soft magnetic materials</subject><subject>Stators</subject><subject>Vibration control</subject><subject>Vibrations</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfmf5rHUaYbbAg6xbeQpql01GYmmbhvb-umL_deDuccLj8ArjGaYIzU3Xo1K-YTgnA-IblQiNATMMKK4Qxh9nba3yinGWOUn4OLGDcIIYYRHgE7tan5cvC1KYNJje9g4bsUfAt9DQ28b913U7YOPvnkAyz3f8oervyuS66Ci36GzrTZczKDZ2XeO5caC_vm3aDES3BWmza6q-Meg5f72bqYZ8vHh0UxXWaWUpUyJaQliBBFa44Mqaxg1iliFHfEWWaxqAVFysiqtmUlqtpYyZGlQopcSC7pGNweerfBf-5cTHrjd8NrURPMpepBscFFDi4bfIzB1Xobmg8T9hojPcDUvzD1AFMfYfahm0Oocc79B3LGBZeS_gBWwHDz</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Lusty, Christopher</creator><creator>Keogh, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6704-3254</orcidid><orcidid>https://orcid.org/0000-0001-7959-0530</orcidid></search><sort><creationdate>201812</creationdate><title>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</title><author>Lusty, Christopher ; Keogh, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-967c202293f50a2dc64ce92a95e2ec4c16f6309a7dfcbd6dfac750c3676867573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Closed loop system</topic><topic>Control systems</topic><topic>electromagnetics</topic><topic>H infinity control</topic><topic>Magnetic bearings</topic><topic>Magnetic levitation</topic><topic>Magnetic resonance</topic><topic>rotating machines</topic><topic>Rotating shafts</topic><topic>Rotor speed</topic><topic>Rotors</topic><topic>Soft magnetic materials</topic><topic>Stators</topic><topic>Vibration control</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lusty, Christopher</creatorcontrib><creatorcontrib>Keogh, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lusty, Christopher</au><au>Keogh, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2018-12</date><risdate>2018</risdate><volume>23</volume><issue>6</issue><spage>2870</spage><epage>2880</epage><pages>2870-2880</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper demonstrates vibration reduction in a hollow rotating shaft by means of internal-stator active magnetic actuators, which are resiliently mounted. This problem requires further consideration over and above classic rotor/magnetic bearing systems on account of the flexible behavior of the magnetic actuator support structure. This paper presents an experimental facility conforming to the proposed topology, with a particular focus on the control problem such a system presents. The unique challenges are discussed, and a solution is presented in the form of H &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;_\infty&lt;/tex-math&gt;&lt;/inline-formula&gt;-based control. Ultimately, experimental results demonstrate the system to be capable of substantial rotor vibration suppression, including while passing the rotor's first critical speed, which was not obtainable with simpler classical control techniques. This means the top achievable rotor speed was increased from approximately 3000 r/min without magnetic actuator vibration suppression to over 9000 r/min with vibration suppression active. At the rotor critical speed, the magnetic actuators affect a reduction in rotor vibration amplitude of over 70% compared to the rotor supported purely on mechanical bearings, while simultaneously avoiding excessive excitation of the flexible active magnetic actuator support structure.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2869023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6704-3254</orcidid><orcidid>https://orcid.org/0000-0001-7959-0530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2018-12, Vol.23 (6), p.2870-2880
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2157910947
source IEEE Electronic Library (IEL)
subjects Active control
Actuators
Closed loop system
Control systems
electromagnetics
H infinity control
Magnetic bearings
Magnetic levitation
Magnetic resonance
rotating machines
Rotating shafts
Rotor speed
Rotors
Soft magnetic materials
Stators
Vibration control
Vibrations
title Active Vibration Control of a Flexible Rotor by Flexibly Mounted Internal-Stator Magnetic Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Vibration%20Control%20of%20a%20Flexible%20Rotor%20by%20Flexibly%20Mounted%20Internal-Stator%20Magnetic%20Actuators&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Lusty,%20Christopher&rft.date=2018-12&rft.volume=23&rft.issue=6&rft.spage=2870&rft.epage=2880&rft.pages=2870-2880&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2869023&rft_dat=%3Cproquest_RIE%3E2157910947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157910947&rft_id=info:pmid/&rft_ieee_id=8456577&rfr_iscdi=true