Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media

Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-11, Vol.54 (11), p.9033-9044
Hauptverfasser: Ritschel, Thomas, Schlüter, Steffen, Köhne, John Maximilian, Vogel, Hans‐Jörg, Totsche, Kai Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9044
container_issue 11
container_start_page 9033
container_title Water resources research
container_volume 54
creator Ritschel, Thomas
Schlüter, Steffen
Köhne, John Maximilian
Vogel, Hans‐Jörg
Totsche, Kai Uwe
description Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to represent structural hierarchy build, for example, on a multidomain continuum for transport or on the coupling of the Stokes equations with Darcy's law for fluid flow. These approaches, however, are computationally expensive or introduce empirical parameters that are difficult to derive with independent observations. We present an efficient model for fluid flow based on Darcy's law and the law of Hagen‐Poiseuille that is parameterized based on the explicit pore space morphology obtained, for example, by X‐ray μ‐CT and inherently permits the coupling of pore‐scale and continuum‐scale domain. We used the resulting flow field to predict the transport of solutes via particle tracking across the different domains. Compared to experimental breakthrough data from laboratory‐scale columns with hierarchically structured porosity built from solid glass beads and microporous glass pellets, an excellent agreement was achieved without any calibration. Furthermore, we present different test scenarios to compare the flow fields resulting from the Stokes‐Brinkman equations and our approach to comprehensively illustrate its advantages and limitations. In this way, we could show a striking efficiency and accuracy of our approach that qualifies as general alternative for the modeling of fluid flow and transport in hierarchical porous media, for example, fractured rock or karstic aquifers. Key Points A model for the simulation of pore‐scale and continuum‐scale flow in hierarchically structured porous media is developed Explicit pore space morphology obtained by image analysis of X‐ray micro‐CT images is used for parameterization Predictions of solute breakthrough obtained by particle tracking perfectly match observations
doi_str_mv 10.1029/2018WR022694
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157700420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157700420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4349-ad7a41a9bcc2fa0e5bb0f16edb0e32bc0c20b9b791a0fb790b32ecb4579394ff3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKs7HyDg1tGbn2nMUkq1QoulVrock0yCKdNJTWYofXsjdeHK1QeXw7lwELomcEeAynsK5GG9BEpHkp-gAZGcF0IKdooGAJwVhElxji5S2gAQXo7EAH1MnPPG27bDi2hrbzofWhwcnvdN5-uwVb7FT03YY9XWeBVVm3Yhdjhfp95GFc2nN6ppDviti73p-izBixBDn_A8-9QlOnOqSfbqd4fo_WmyGk-L2evzy_hxVijOuCxULRQnSmpjqFNgS63BkZGtNVhGtQFDQUstJFHg8oBm1BrNSyGZ5M6xIbo5encxfPU2ddUm9LHNLytKSiFyAAqZuj1SJoaUonXVLvqtioeKQPXTsPrbMOPsiO99Yw__stV6OV5SNmKSfQPrBHRt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157700420</pqid></control><display><type>article</type><title>Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media</title><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Ritschel, Thomas ; Schlüter, Steffen ; Köhne, John Maximilian ; Vogel, Hans‐Jörg ; Totsche, Kai Uwe</creator><creatorcontrib>Ritschel, Thomas ; Schlüter, Steffen ; Köhne, John Maximilian ; Vogel, Hans‐Jörg ; Totsche, Kai Uwe</creatorcontrib><description>Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to represent structural hierarchy build, for example, on a multidomain continuum for transport or on the coupling of the Stokes equations with Darcy's law for fluid flow. These approaches, however, are computationally expensive or introduce empirical parameters that are difficult to derive with independent observations. We present an efficient model for fluid flow based on Darcy's law and the law of Hagen‐Poiseuille that is parameterized based on the explicit pore space morphology obtained, for example, by X‐ray μ‐CT and inherently permits the coupling of pore‐scale and continuum‐scale domain. We used the resulting flow field to predict the transport of solutes via particle tracking across the different domains. Compared to experimental breakthrough data from laboratory‐scale columns with hierarchically structured porosity built from solid glass beads and microporous glass pellets, an excellent agreement was achieved without any calibration. Furthermore, we present different test scenarios to compare the flow fields resulting from the Stokes‐Brinkman equations and our approach to comprehensively illustrate its advantages and limitations. In this way, we could show a striking efficiency and accuracy of our approach that qualifies as general alternative for the modeling of fluid flow and transport in hierarchical porous media, for example, fractured rock or karstic aquifers. Key Points A model for the simulation of pore‐scale and continuum‐scale flow in hierarchically structured porous media is developed Explicit pore space morphology obtained by image analysis of X‐ray micro‐CT images is used for parameterization Predictions of solute breakthrough obtained by particle tracking perfectly match observations</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR022694</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aquifers ; Beads ; column experiments ; Columns (structural) ; Computational fluid dynamics ; Coupling ; Darcy's law ; Darcys law ; Domains ; Fluid flow ; Fractures ; Glass ; Glass beads ; image analysis ; Karst ; Mathematical models ; Modelling ; Morphology ; Particle tracking ; pore space morphology ; Porosity ; Porous media ; Solutes ; Stokes law (fluid mechanics) ; Structural hierarchy ; Transport ; X‐ray μ‐CT</subject><ispartof>Water resources research, 2018-11, Vol.54 (11), p.9033-9044</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4349-ad7a41a9bcc2fa0e5bb0f16edb0e32bc0c20b9b791a0fb790b32ecb4579394ff3</citedby><cites>FETCH-LOGICAL-a4349-ad7a41a9bcc2fa0e5bb0f16edb0e32bc0c20b9b791a0fb790b32ecb4579394ff3</cites><orcidid>0000-0002-9922-1107 ; 0000-0002-3140-9058 ; 0000-0003-2404-9485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR022694$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR022694$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Schlüter, Steffen</creatorcontrib><creatorcontrib>Köhne, John Maximilian</creatorcontrib><creatorcontrib>Vogel, Hans‐Jörg</creatorcontrib><creatorcontrib>Totsche, Kai Uwe</creatorcontrib><title>Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media</title><title>Water resources research</title><description>Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to represent structural hierarchy build, for example, on a multidomain continuum for transport or on the coupling of the Stokes equations with Darcy's law for fluid flow. These approaches, however, are computationally expensive or introduce empirical parameters that are difficult to derive with independent observations. We present an efficient model for fluid flow based on Darcy's law and the law of Hagen‐Poiseuille that is parameterized based on the explicit pore space morphology obtained, for example, by X‐ray μ‐CT and inherently permits the coupling of pore‐scale and continuum‐scale domain. We used the resulting flow field to predict the transport of solutes via particle tracking across the different domains. Compared to experimental breakthrough data from laboratory‐scale columns with hierarchically structured porosity built from solid glass beads and microporous glass pellets, an excellent agreement was achieved without any calibration. Furthermore, we present different test scenarios to compare the flow fields resulting from the Stokes‐Brinkman equations and our approach to comprehensively illustrate its advantages and limitations. In this way, we could show a striking efficiency and accuracy of our approach that qualifies as general alternative for the modeling of fluid flow and transport in hierarchical porous media, for example, fractured rock or karstic aquifers. Key Points A model for the simulation of pore‐scale and continuum‐scale flow in hierarchically structured porous media is developed Explicit pore space morphology obtained by image analysis of X‐ray micro‐CT images is used for parameterization Predictions of solute breakthrough obtained by particle tracking perfectly match observations</description><subject>Aquifers</subject><subject>Beads</subject><subject>column experiments</subject><subject>Columns (structural)</subject><subject>Computational fluid dynamics</subject><subject>Coupling</subject><subject>Darcy's law</subject><subject>Darcys law</subject><subject>Domains</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Glass</subject><subject>Glass beads</subject><subject>image analysis</subject><subject>Karst</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Particle tracking</subject><subject>pore space morphology</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Solutes</subject><subject>Stokes law (fluid mechanics)</subject><subject>Structural hierarchy</subject><subject>Transport</subject><subject>X‐ray μ‐CT</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1KAzEURoMoWKs7HyDg1tGbn2nMUkq1QoulVrock0yCKdNJTWYofXsjdeHK1QeXw7lwELomcEeAynsK5GG9BEpHkp-gAZGcF0IKdooGAJwVhElxji5S2gAQXo7EAH1MnPPG27bDi2hrbzofWhwcnvdN5-uwVb7FT03YY9XWeBVVm3Yhdjhfp95GFc2nN6ppDviti73p-izBixBDn_A8-9QlOnOqSfbqd4fo_WmyGk-L2evzy_hxVijOuCxULRQnSmpjqFNgS63BkZGtNVhGtQFDQUstJFHg8oBm1BrNSyGZ5M6xIbo5encxfPU2ddUm9LHNLytKSiFyAAqZuj1SJoaUonXVLvqtioeKQPXTsPrbMOPsiO99Yw__stV6OV5SNmKSfQPrBHRt</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Ritschel, Thomas</creator><creator>Schlüter, Steffen</creator><creator>Köhne, John Maximilian</creator><creator>Vogel, Hans‐Jörg</creator><creator>Totsche, Kai Uwe</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3140-9058</orcidid><orcidid>https://orcid.org/0000-0003-2404-9485</orcidid></search><sort><creationdate>201811</creationdate><title>Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media</title><author>Ritschel, Thomas ; Schlüter, Steffen ; Köhne, John Maximilian ; Vogel, Hans‐Jörg ; Totsche, Kai Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4349-ad7a41a9bcc2fa0e5bb0f16edb0e32bc0c20b9b791a0fb790b32ecb4579394ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquifers</topic><topic>Beads</topic><topic>column experiments</topic><topic>Columns (structural)</topic><topic>Computational fluid dynamics</topic><topic>Coupling</topic><topic>Darcy's law</topic><topic>Darcys law</topic><topic>Domains</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Glass</topic><topic>Glass beads</topic><topic>image analysis</topic><topic>Karst</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Particle tracking</topic><topic>pore space morphology</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Solutes</topic><topic>Stokes law (fluid mechanics)</topic><topic>Structural hierarchy</topic><topic>Transport</topic><topic>X‐ray μ‐CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Schlüter, Steffen</creatorcontrib><creatorcontrib>Köhne, John Maximilian</creatorcontrib><creatorcontrib>Vogel, Hans‐Jörg</creatorcontrib><creatorcontrib>Totsche, Kai Uwe</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritschel, Thomas</au><au>Schlüter, Steffen</au><au>Köhne, John Maximilian</au><au>Vogel, Hans‐Jörg</au><au>Totsche, Kai Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media</atitle><jtitle>Water resources research</jtitle><date>2018-11</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>9033</spage><epage>9044</epage><pages>9033-9044</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Structural hierarchy is a fundamental characteristic of natural porous media. Yet it provokes one of the grand challenges for the modeling of fluid flow and transport since pore‐scale structures and continuum‐scale domains often coincide independent of the observation scale. Common approaches to represent structural hierarchy build, for example, on a multidomain continuum for transport or on the coupling of the Stokes equations with Darcy's law for fluid flow. These approaches, however, are computationally expensive or introduce empirical parameters that are difficult to derive with independent observations. We present an efficient model for fluid flow based on Darcy's law and the law of Hagen‐Poiseuille that is parameterized based on the explicit pore space morphology obtained, for example, by X‐ray μ‐CT and inherently permits the coupling of pore‐scale and continuum‐scale domain. We used the resulting flow field to predict the transport of solutes via particle tracking across the different domains. Compared to experimental breakthrough data from laboratory‐scale columns with hierarchically structured porosity built from solid glass beads and microporous glass pellets, an excellent agreement was achieved without any calibration. Furthermore, we present different test scenarios to compare the flow fields resulting from the Stokes‐Brinkman equations and our approach to comprehensively illustrate its advantages and limitations. In this way, we could show a striking efficiency and accuracy of our approach that qualifies as general alternative for the modeling of fluid flow and transport in hierarchical porous media, for example, fractured rock or karstic aquifers. Key Points A model for the simulation of pore‐scale and continuum‐scale flow in hierarchically structured porous media is developed Explicit pore space morphology obtained by image analysis of X‐ray micro‐CT images is used for parameterization Predictions of solute breakthrough obtained by particle tracking perfectly match observations</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018WR022694</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3140-9058</orcidid><orcidid>https://orcid.org/0000-0003-2404-9485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-11, Vol.54 (11), p.9033-9044
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2157700420
source Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Aquifers
Beads
column experiments
Columns (structural)
Computational fluid dynamics
Coupling
Darcy's law
Darcys law
Domains
Fluid flow
Fractures
Glass
Glass beads
image analysis
Karst
Mathematical models
Modelling
Morphology
Particle tracking
pore space morphology
Porosity
Porous media
Solutes
Stokes law (fluid mechanics)
Structural hierarchy
Transport
X‐ray μ‐CT
title Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Prediction%20of%20Multidomain%20Flow%20and%20Transport%20in%20Hierarchically%20Structured%20Porous%20Media&rft.jtitle=Water%20resources%20research&rft.au=Ritschel,%20Thomas&rft.date=2018-11&rft.volume=54&rft.issue=11&rft.spage=9033&rft.epage=9044&rft.pages=9033-9044&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR022694&rft_dat=%3Cproquest_cross%3E2157700420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157700420&rft_id=info:pmid/&rfr_iscdi=true