Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications

The doping influenced morphological alteration and its consequent impact on electrochemical properties of Mn3O4 electrodes has been investigated. The Ni doped Mn3O4 are characterized for its surface morphological, compositional, structural, optical and electrochemical properties. The polycrystalline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-02, Vol.774, p.787
Hauptverfasser: Naiknaware, AG, Chavan, JU, Kaldate, SH, Yadav, Abhijit A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 787
container_title Journal of alloys and compounds
container_volume 774
creator Naiknaware, AG
Chavan, JU
Kaldate, SH
Yadav, Abhijit A
description The doping influenced morphological alteration and its consequent impact on electrochemical properties of Mn3O4 electrodes has been investigated. The Ni doped Mn3O4 are characterized for its surface morphological, compositional, structural, optical and electrochemical properties. The polycrystalline nature of Ni doped Mn3O4 films with tetragonal Hausmannite crystal structure has been confirmed from x-ray diffraction. The field emission scanning electron microscope study shows that Ni doped Mn3O4 films have porous nanoflakes type surface morphology. The band gap energy for Ni doped Mn3O4 films ranges between 2.55 and 3.29 eV depending on the Ni doping. The specific capacitance of 705 Fg‒1 from cyclic voltammetry and 740 F g−1 from galvanostatic charge/discharge has been perceived. The Ni doped Mn3O4 electrode show good electrochemical cycling stability. The electrochemical impedance study showed charge transfer resistance of 6.8 Ωcm2 for 0.50 mol % Ni doped Mn3O4 electrode.
doi_str_mv 10.1016/j.jallcom.2018.10.001
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2157468679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157468679</sourcerecordid><originalsourceid>FETCH-proquest_journals_21574686793</originalsourceid><addsrcrecordid>eNqNi8tOxCAUhslEk6mXR5iExHUrlA6la6Nx47jQdUcEJqFhepADC99eYnwAV__t-wnZcdZxxuX90i06BAPnrmdc1a5jjG9Iw9Uo2kHK6YI0bOr3rRJKbckV4sIqMQnekI-3XKx3SGGlGJP-ptZFQJ-dpQdPLcRqXtYZyycV8-uvDjN1wZmcwNbjCRLFEl0yOmrjc406xuCNzh5WvCGXJx3Q3f7pNbl7enx_eG5jgq_iMB8XKGmt07Hn-3GQSo6T-B_1AxZ4Tdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157468679</pqid></control><display><type>article</type><title>Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Naiknaware, AG ; Chavan, JU ; Kaldate, SH ; Yadav, Abhijit A</creator><creatorcontrib>Naiknaware, AG ; Chavan, JU ; Kaldate, SH ; Yadav, Abhijit A</creatorcontrib><description>The doping influenced morphological alteration and its consequent impact on electrochemical properties of Mn3O4 electrodes has been investigated. The Ni doped Mn3O4 are characterized for its surface morphological, compositional, structural, optical and electrochemical properties. The polycrystalline nature of Ni doped Mn3O4 films with tetragonal Hausmannite crystal structure has been confirmed from x-ray diffraction. The field emission scanning electron microscope study shows that Ni doped Mn3O4 films have porous nanoflakes type surface morphology. The band gap energy for Ni doped Mn3O4 films ranges between 2.55 and 3.29 eV depending on the Ni doping. The specific capacitance of 705 Fg‒1 from cyclic voltammetry and 740 F g−1 from galvanostatic charge/discharge has been perceived. The Ni doped Mn3O4 electrode show good electrochemical cycling stability. The electrochemical impedance study showed charge transfer resistance of 6.8 Ωcm2 for 0.50 mol % Ni doped Mn3O4 electrode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.10.001</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Charge transfer ; Crystal structure ; Diffraction ; Doping ; Electrochemical analysis ; Electrodes ; Emission analysis ; Energy gap ; Field emission microscopy ; Hausmannite ; Manganese oxides ; Morphology ; Nickel ; Optical properties ; Polycrystals ; Scanning electron microscopy ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-02, Vol.774, p.787</ispartof><rights>Copyright Elsevier BV Feb 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naiknaware, AG</creatorcontrib><creatorcontrib>Chavan, JU</creatorcontrib><creatorcontrib>Kaldate, SH</creatorcontrib><creatorcontrib>Yadav, Abhijit A</creatorcontrib><title>Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications</title><title>Journal of alloys and compounds</title><description>The doping influenced morphological alteration and its consequent impact on electrochemical properties of Mn3O4 electrodes has been investigated. The Ni doped Mn3O4 are characterized for its surface morphological, compositional, structural, optical and electrochemical properties. The polycrystalline nature of Ni doped Mn3O4 films with tetragonal Hausmannite crystal structure has been confirmed from x-ray diffraction. The field emission scanning electron microscope study shows that Ni doped Mn3O4 films have porous nanoflakes type surface morphology. The band gap energy for Ni doped Mn3O4 films ranges between 2.55 and 3.29 eV depending on the Ni doping. The specific capacitance of 705 Fg‒1 from cyclic voltammetry and 740 F g−1 from galvanostatic charge/discharge has been perceived. The Ni doped Mn3O4 electrode show good electrochemical cycling stability. The electrochemical impedance study showed charge transfer resistance of 6.8 Ωcm2 for 0.50 mol % Ni doped Mn3O4 electrode.</description><subject>Charge transfer</subject><subject>Crystal structure</subject><subject>Diffraction</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>Energy gap</subject><subject>Field emission microscopy</subject><subject>Hausmannite</subject><subject>Manganese oxides</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Optical properties</subject><subject>Polycrystals</subject><subject>Scanning electron microscopy</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNi8tOxCAUhslEk6mXR5iExHUrlA6la6Nx47jQdUcEJqFhepADC99eYnwAV__t-wnZcdZxxuX90i06BAPnrmdc1a5jjG9Iw9Uo2kHK6YI0bOr3rRJKbckV4sIqMQnekI-3XKx3SGGlGJP-ptZFQJ-dpQdPLcRqXtYZyycV8-uvDjN1wZmcwNbjCRLFEl0yOmrjc406xuCNzh5WvCGXJx3Q3f7pNbl7enx_eG5jgq_iMB8XKGmt07Hn-3GQSo6T-B_1AxZ4Tdc</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Naiknaware, AG</creator><creator>Chavan, JU</creator><creator>Kaldate, SH</creator><creator>Yadav, Abhijit A</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190205</creationdate><title>Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications</title><author>Naiknaware, AG ; Chavan, JU ; Kaldate, SH ; Yadav, Abhijit A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21574686793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Crystal structure</topic><topic>Diffraction</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>Energy gap</topic><topic>Field emission microscopy</topic><topic>Hausmannite</topic><topic>Manganese oxides</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Optical properties</topic><topic>Polycrystals</topic><topic>Scanning electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naiknaware, AG</creatorcontrib><creatorcontrib>Chavan, JU</creatorcontrib><creatorcontrib>Kaldate, SH</creatorcontrib><creatorcontrib>Yadav, Abhijit A</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naiknaware, AG</au><au>Chavan, JU</au><au>Kaldate, SH</au><au>Yadav, Abhijit A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-02-05</date><risdate>2019</risdate><volume>774</volume><spage>787</spage><pages>787-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The doping influenced morphological alteration and its consequent impact on electrochemical properties of Mn3O4 electrodes has been investigated. The Ni doped Mn3O4 are characterized for its surface morphological, compositional, structural, optical and electrochemical properties. The polycrystalline nature of Ni doped Mn3O4 films with tetragonal Hausmannite crystal structure has been confirmed from x-ray diffraction. The field emission scanning electron microscope study shows that Ni doped Mn3O4 films have porous nanoflakes type surface morphology. The band gap energy for Ni doped Mn3O4 films ranges between 2.55 and 3.29 eV depending on the Ni doping. The specific capacitance of 705 Fg‒1 from cyclic voltammetry and 740 F g−1 from galvanostatic charge/discharge has been perceived. The Ni doped Mn3O4 electrode show good electrochemical cycling stability. The electrochemical impedance study showed charge transfer resistance of 6.8 Ωcm2 for 0.50 mol % Ni doped Mn3O4 electrode.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2018.10.001</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-02, Vol.774, p.787
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2157468679
source Access via ScienceDirect (Elsevier)
subjects Charge transfer
Crystal structure
Diffraction
Doping
Electrochemical analysis
Electrodes
Emission analysis
Energy gap
Field emission microscopy
Hausmannite
Manganese oxides
Morphology
Nickel
Optical properties
Polycrystals
Scanning electron microscopy
X-ray diffraction
title Studies on spray deposited Ni doped Mn^sub 3^O^sub 4^ electrodes for supercapacitor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20spray%20deposited%20Ni%20doped%20Mn%5Esub%203%5EO%5Esub%204%5E%20electrodes%20for%20supercapacitor%20applications&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Naiknaware,%20AG&rft.date=2019-02-05&rft.volume=774&rft.spage=787&rft.pages=787-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.10.001&rft_dat=%3Cproquest%3E2157468679%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157468679&rft_id=info:pmid/&rfr_iscdi=true