Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures

•Implementation of a novel fracture mechanics test equipment for plastics in severe environments.•Fatigue crack growth testing under near-service conditions.•The test system allows for the control of chlorine content, pH and temperature.•Tests can be conducted with cracked round bar (CRB) and compac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2018-11, Vol.203, p.44-53
Hauptverfasser: Fischer, Joerg, Bradler, Patrick R., Lang, Reinhold W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 44
container_title Engineering fracture mechanics
container_volume 203
creator Fischer, Joerg
Bradler, Patrick R.
Lang, Reinhold W.
description •Implementation of a novel fracture mechanics test equipment for plastics in severe environments.•Fatigue crack growth testing under near-service conditions.•The test system allows for the control of chlorine content, pH and temperature.•Tests can be conducted with cracked round bar (CRB) and compact type (CT) specimens. In this research, a test arrangement was designed and implemented that allows for fatigue crack growth testing in chlorinated water utilizing a conventional electro-dynamic testing machine. The developed equipment enables the quasi-automatic, in-situ determination of fatigue crack growth rates under non-interrupted loading via an optical crack length measurement device. The test system consists of three main units, a chlorine control unit, a temperature control unit and an environmental containment for the test specimen. The chlorine content may be held constant at specific pH values in the range from 0.1 to 10 ppm, and the temperature may be controlled in range from 23 °C to 95 °C. In terms of specimen configuration, tests can be performed with cracked round bar and compact type specimens. In order to demonstrate the performance of this test system, two polymer grades (polypropylene and 30 w% short-glass fiber reinforced polyamide) were tested. Both materials exhibited a decreasing fatigue crack growth resistance with increasing chlorine content and with increasing temperature.
doi_str_mv 10.1016/j.engfracmech.2018.04.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157468670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794417313437</els_id><sourcerecordid>2157468670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d28712056d63c8e37bded5c77628fc3e1847e3d9130ff05519bb20e5c7f1cf843</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_GHFuWMdJ7B5RxUuqxKWcrdRepy5NnDoOVf8eV-XAkdOsdmdmNUPIPYOMAasetxl2jQ21blFvshyYzKDIgFcXZMKk4DPBWXlJJgAszfOiuCY3w7AFAFFJmJBxhUOkuB9d32IXqfWB2jq6ZkSqk-0XbYI_xA2Niee6hnpLe787thicpm0dE9a7gbqO6s3OB9ellaGH04HWkRpnLYaTc8S2x1DHMeBwS65sUuHdL07J58vzavE2W368vi-eljPNpYwzk0vBcigrU3EtkYu1QVNqIapcWs2RyUIgN3PGwVooSzZfr3PAxLBMW1nwKXk4-_bB78eUQG39GLr0UuWsFEUlKwGJNT-zdPDDENCqPri2DkfFQJ1aVlv1p2V1allBoVLLSbs4azHF-HYY1KAddhqNC6ijMt79w-UH94SOcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157468670</pqid></control><display><type>article</type><title>Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fischer, Joerg ; Bradler, Patrick R. ; Lang, Reinhold W.</creator><creatorcontrib>Fischer, Joerg ; Bradler, Patrick R. ; Lang, Reinhold W.</creatorcontrib><description>•Implementation of a novel fracture mechanics test equipment for plastics in severe environments.•Fatigue crack growth testing under near-service conditions.•The test system allows for the control of chlorine content, pH and temperature.•Tests can be conducted with cracked round bar (CRB) and compact type (CT) specimens. In this research, a test arrangement was designed and implemented that allows for fatigue crack growth testing in chlorinated water utilizing a conventional electro-dynamic testing machine. The developed equipment enables the quasi-automatic, in-situ determination of fatigue crack growth rates under non-interrupted loading via an optical crack length measurement device. The test system consists of three main units, a chlorine control unit, a temperature control unit and an environmental containment for the test specimen. The chlorine content may be held constant at specific pH values in the range from 0.1 to 10 ppm, and the temperature may be controlled in range from 23 °C to 95 °C. In terms of specimen configuration, tests can be performed with cracked round bar and compact type specimens. In order to demonstrate the performance of this test system, two polymer grades (polypropylene and 30 w% short-glass fiber reinforced polyamide) were tested. Both materials exhibited a decreasing fatigue crack growth resistance with increasing chlorine content and with increasing temperature.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2018.04.036</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Chlorinated water ; Chlorine ; Combined mechanical-environmental testing ; Configuration management ; Containment ; Crack propagation ; Dynamic tests ; Elevated temperatures ; Environmental testing ; Fatigue crack growth resistance ; Fatigue failure ; Fatigue tests ; Fiber reinforced polymers ; Fracture mechanics ; Glass fiber reinforced plastics ; Materials fatigue ; Polyamide resins ; Sodium hypochlorite ; Temperature control ; Test equipment ; Water temperature</subject><ispartof>Engineering fracture mechanics, 2018-11, Vol.203, p.44-53</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d28712056d63c8e37bded5c77628fc3e1847e3d9130ff05519bb20e5c7f1cf843</citedby><cites>FETCH-LOGICAL-c388t-d28712056d63c8e37bded5c77628fc3e1847e3d9130ff05519bb20e5c7f1cf843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2018.04.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fischer, Joerg</creatorcontrib><creatorcontrib>Bradler, Patrick R.</creatorcontrib><creatorcontrib>Lang, Reinhold W.</creatorcontrib><title>Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures</title><title>Engineering fracture mechanics</title><description>•Implementation of a novel fracture mechanics test equipment for plastics in severe environments.•Fatigue crack growth testing under near-service conditions.•The test system allows for the control of chlorine content, pH and temperature.•Tests can be conducted with cracked round bar (CRB) and compact type (CT) specimens. In this research, a test arrangement was designed and implemented that allows for fatigue crack growth testing in chlorinated water utilizing a conventional electro-dynamic testing machine. The developed equipment enables the quasi-automatic, in-situ determination of fatigue crack growth rates under non-interrupted loading via an optical crack length measurement device. The test system consists of three main units, a chlorine control unit, a temperature control unit and an environmental containment for the test specimen. The chlorine content may be held constant at specific pH values in the range from 0.1 to 10 ppm, and the temperature may be controlled in range from 23 °C to 95 °C. In terms of specimen configuration, tests can be performed with cracked round bar and compact type specimens. In order to demonstrate the performance of this test system, two polymer grades (polypropylene and 30 w% short-glass fiber reinforced polyamide) were tested. Both materials exhibited a decreasing fatigue crack growth resistance with increasing chlorine content and with increasing temperature.</description><subject>Chlorinated water</subject><subject>Chlorine</subject><subject>Combined mechanical-environmental testing</subject><subject>Configuration management</subject><subject>Containment</subject><subject>Crack propagation</subject><subject>Dynamic tests</subject><subject>Elevated temperatures</subject><subject>Environmental testing</subject><subject>Fatigue crack growth resistance</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fiber reinforced polymers</subject><subject>Fracture mechanics</subject><subject>Glass fiber reinforced plastics</subject><subject>Materials fatigue</subject><subject>Polyamide resins</subject><subject>Sodium hypochlorite</subject><subject>Temperature control</subject><subject>Test equipment</subject><subject>Water temperature</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_GHFuWMdJ7B5RxUuqxKWcrdRepy5NnDoOVf8eV-XAkdOsdmdmNUPIPYOMAasetxl2jQ21blFvshyYzKDIgFcXZMKk4DPBWXlJJgAszfOiuCY3w7AFAFFJmJBxhUOkuB9d32IXqfWB2jq6ZkSqk-0XbYI_xA2Niee6hnpLe787thicpm0dE9a7gbqO6s3OB9ellaGH04HWkRpnLYaTc8S2x1DHMeBwS65sUuHdL07J58vzavE2W368vi-eljPNpYwzk0vBcigrU3EtkYu1QVNqIapcWs2RyUIgN3PGwVooSzZfr3PAxLBMW1nwKXk4-_bB78eUQG39GLr0UuWsFEUlKwGJNT-zdPDDENCqPri2DkfFQJ1aVlv1p2V1allBoVLLSbs4azHF-HYY1KAddhqNC6ijMt79w-UH94SOcQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Fischer, Joerg</creator><creator>Bradler, Patrick R.</creator><creator>Lang, Reinhold W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20181101</creationdate><title>Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures</title><author>Fischer, Joerg ; Bradler, Patrick R. ; Lang, Reinhold W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d28712056d63c8e37bded5c77628fc3e1847e3d9130ff05519bb20e5c7f1cf843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chlorinated water</topic><topic>Chlorine</topic><topic>Combined mechanical-environmental testing</topic><topic>Configuration management</topic><topic>Containment</topic><topic>Crack propagation</topic><topic>Dynamic tests</topic><topic>Elevated temperatures</topic><topic>Environmental testing</topic><topic>Fatigue crack growth resistance</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fiber reinforced polymers</topic><topic>Fracture mechanics</topic><topic>Glass fiber reinforced plastics</topic><topic>Materials fatigue</topic><topic>Polyamide resins</topic><topic>Sodium hypochlorite</topic><topic>Temperature control</topic><topic>Test equipment</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Joerg</creatorcontrib><creatorcontrib>Bradler, Patrick R.</creatorcontrib><creatorcontrib>Lang, Reinhold W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Joerg</au><au>Bradler, Patrick R.</au><au>Lang, Reinhold W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>203</volume><spage>44</spage><epage>53</epage><pages>44-53</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Implementation of a novel fracture mechanics test equipment for plastics in severe environments.•Fatigue crack growth testing under near-service conditions.•The test system allows for the control of chlorine content, pH and temperature.•Tests can be conducted with cracked round bar (CRB) and compact type (CT) specimens. In this research, a test arrangement was designed and implemented that allows for fatigue crack growth testing in chlorinated water utilizing a conventional electro-dynamic testing machine. The developed equipment enables the quasi-automatic, in-situ determination of fatigue crack growth rates under non-interrupted loading via an optical crack length measurement device. The test system consists of three main units, a chlorine control unit, a temperature control unit and an environmental containment for the test specimen. The chlorine content may be held constant at specific pH values in the range from 0.1 to 10 ppm, and the temperature may be controlled in range from 23 °C to 95 °C. In terms of specimen configuration, tests can be performed with cracked round bar and compact type specimens. In order to demonstrate the performance of this test system, two polymer grades (polypropylene and 30 w% short-glass fiber reinforced polyamide) were tested. Both materials exhibited a decreasing fatigue crack growth resistance with increasing chlorine content and with increasing temperature.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2018.04.036</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2018-11, Vol.203, p.44-53
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2157468670
source Elsevier ScienceDirect Journals Complete
subjects Chlorinated water
Chlorine
Combined mechanical-environmental testing
Configuration management
Containment
Crack propagation
Dynamic tests
Elevated temperatures
Environmental testing
Fatigue crack growth resistance
Fatigue failure
Fatigue tests
Fiber reinforced polymers
Fracture mechanics
Glass fiber reinforced plastics
Materials fatigue
Polyamide resins
Sodium hypochlorite
Temperature control
Test equipment
Water temperature
title Test equipment for fatigue crack growth testing of polymeric materials in chlorinated water at different temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20equipment%20for%20fatigue%20crack%20growth%20testing%20of%20polymeric%20materials%20in%20chlorinated%20water%20at%20different%20temperatures&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Fischer,%20Joerg&rft.date=2018-11-01&rft.volume=203&rft.spage=44&rft.epage=53&rft.pages=44-53&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2018.04.036&rft_dat=%3Cproquest_cross%3E2157468670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157468670&rft_id=info:pmid/&rft_els_id=S0013794417313437&rfr_iscdi=true