Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites

Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-11, Vol.168, p.412-419
Hauptverfasser: Wang, Long, Okada, Kiyomi, Sodenaga, Minami, Hikima, Yuta, Ohshima, Masahiro, Sekiguchi, Takafumi, Yano, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue
container_start_page 412
container_title Composites science and technology
container_volume 168
creator Wang, Long
Okada, Kiyomi
Sodenaga, Minami
Hikima, Yuta
Ohshima, Masahiro
Sekiguchi, Takafumi
Yano, Hiroyuki
description Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.
doi_str_mv 10.1016/j.compscitech.2018.10.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157464055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818320001</els_id><sourcerecordid>2157464055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</originalsourceid><addsrcrecordid>eNqNkcFuGyEQhlHVSnHTvANVr14Hdg2YY2WlbaRIubRnxM4OMS6GLawjbd-ob1m2ziHHSkig4f9n5tdHyEfONpxxeXvcQDqNBfyEcNi0jO9qfcPa7g1Z8Z3SDWeCvSUr1krZdKLbXZH3pRwZY0rodkX-3DmHMNHkaDlnZwHpKQ3eebCTT5HWMx2QDr6MmEutrGk-YArpqSoC7fFgn33Kawp5LpMNwf--GH_6iJOHsqY2DtQle_LxidreBz_Ny7gxhXnMaZwDRrwFDOEcUkEabUzO95j_vZZ0qdR05QN552woePNyX5MfX-6-7781D49f7_efHxrYSjk1HC0yKSRXHWotrOtxkL0cVC_AcdjunNUdCBBKag5OaqVADRK4lrwftOquyadL37rcrzOWyRzTOcc60rRcqK3cMiGqSl9UkFMpGZ0Zsz_ZPBvOzELGHM0rMmYhs3xVMtW7v3ixxnj2mE1VYQQcfK4szJD8f3T5C4bCo4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157464055</pqid></control><display><type>article</type><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</creator><creatorcontrib>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</creatorcontrib><description>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.10.023</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Anhydrides ; Cellulose ; Cellulose nanofiber ; Computed tomography ; Crystallization ; Dispersion ; Foaming ; Foams ; Fourier transforms ; Infrared spectroscopy ; Injection molding ; Kinetics ; Morphology ; Nanocomposites ; Nanofibers ; Polypropylene ; Rheological properties ; Rheology ; Surface modification ; X ray imagery</subject><ispartof>Composites science and technology, 2018-11, Vol.168, p.412-419</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</citedby><cites>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</cites><orcidid>0000-0001-5942-5095 ; 0000-0002-4265-1149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2018.10.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Okada, Kiyomi</creatorcontrib><creatorcontrib>Sodenaga, Minami</creatorcontrib><creatorcontrib>Hikima, Yuta</creatorcontrib><creatorcontrib>Ohshima, Masahiro</creatorcontrib><creatorcontrib>Sekiguchi, Takafumi</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><title>Composites science and technology</title><description>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</description><subject>Anhydrides</subject><subject>Cellulose</subject><subject>Cellulose nanofiber</subject><subject>Computed tomography</subject><subject>Crystallization</subject><subject>Dispersion</subject><subject>Foaming</subject><subject>Foams</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Injection molding</subject><subject>Kinetics</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Polypropylene</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Surface modification</subject><subject>X ray imagery</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkcFuGyEQhlHVSnHTvANVr14Hdg2YY2WlbaRIubRnxM4OMS6GLawjbd-ob1m2ziHHSkig4f9n5tdHyEfONpxxeXvcQDqNBfyEcNi0jO9qfcPa7g1Z8Z3SDWeCvSUr1krZdKLbXZH3pRwZY0rodkX-3DmHMNHkaDlnZwHpKQ3eebCTT5HWMx2QDr6MmEutrGk-YArpqSoC7fFgn33Kawp5LpMNwf--GH_6iJOHsqY2DtQle_LxidreBz_Ny7gxhXnMaZwDRrwFDOEcUkEabUzO95j_vZZ0qdR05QN552woePNyX5MfX-6-7781D49f7_efHxrYSjk1HC0yKSRXHWotrOtxkL0cVC_AcdjunNUdCBBKag5OaqVADRK4lrwftOquyadL37rcrzOWyRzTOcc60rRcqK3cMiGqSl9UkFMpGZ0Zsz_ZPBvOzELGHM0rMmYhs3xVMtW7v3ixxnj2mE1VYQQcfK4szJD8f3T5C4bCo4g</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Wang, Long</creator><creator>Okada, Kiyomi</creator><creator>Sodenaga, Minami</creator><creator>Hikima, Yuta</creator><creator>Ohshima, Masahiro</creator><creator>Sekiguchi, Takafumi</creator><creator>Yano, Hiroyuki</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5942-5095</orcidid><orcidid>https://orcid.org/0000-0002-4265-1149</orcidid></search><sort><creationdate>20181110</creationdate><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><author>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anhydrides</topic><topic>Cellulose</topic><topic>Cellulose nanofiber</topic><topic>Computed tomography</topic><topic>Crystallization</topic><topic>Dispersion</topic><topic>Foaming</topic><topic>Foams</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Injection molding</topic><topic>Kinetics</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Polypropylene</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Surface modification</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Okada, Kiyomi</creatorcontrib><creatorcontrib>Sodenaga, Minami</creatorcontrib><creatorcontrib>Hikima, Yuta</creatorcontrib><creatorcontrib>Ohshima, Masahiro</creatorcontrib><creatorcontrib>Sekiguchi, Takafumi</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Long</au><au>Okada, Kiyomi</au><au>Sodenaga, Minami</au><au>Hikima, Yuta</au><au>Ohshima, Masahiro</au><au>Sekiguchi, Takafumi</au><au>Yano, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</atitle><jtitle>Composites science and technology</jtitle><date>2018-11-10</date><risdate>2018</risdate><volume>168</volume><spage>412</spage><epage>419</epage><pages>412-419</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.10.023</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5942-5095</orcidid><orcidid>https://orcid.org/0000-0002-4265-1149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2018-11, Vol.168, p.412-419
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2157464055
source Access via ScienceDirect (Elsevier)
subjects Anhydrides
Cellulose
Cellulose nanofiber
Computed tomography
Crystallization
Dispersion
Foaming
Foams
Fourier transforms
Infrared spectroscopy
Injection molding
Kinetics
Morphology
Nanocomposites
Nanofibers
Polypropylene
Rheological properties
Rheology
Surface modification
X ray imagery
title Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20modification%20on%20the%20dispersion,%20rheological%20behavior,%20crystallization%20kinetics,%20and%20foaming%20ability%20of%20polypropylene/cellulose%20nanofiber%20nanocomposites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Wang,%20Long&rft.date=2018-11-10&rft.volume=168&rft.spage=412&rft.epage=419&rft.pages=412-419&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.10.023&rft_dat=%3Cproquest_cross%3E2157464055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157464055&rft_id=info:pmid/&rft_els_id=S0266353818320001&rfr_iscdi=true