Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites
Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were p...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2018-11, Vol.168, p.412-419 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | |
container_start_page | 412 |
container_title | Composites science and technology |
container_volume | 168 |
creator | Wang, Long Okada, Kiyomi Sodenaga, Minami Hikima, Yuta Ohshima, Masahiro Sekiguchi, Takafumi Yano, Hiroyuki |
description | Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density. |
doi_str_mv | 10.1016/j.compscitech.2018.10.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157464055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818320001</els_id><sourcerecordid>2157464055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</originalsourceid><addsrcrecordid>eNqNkcFuGyEQhlHVSnHTvANVr14Hdg2YY2WlbaRIubRnxM4OMS6GLawjbd-ob1m2ziHHSkig4f9n5tdHyEfONpxxeXvcQDqNBfyEcNi0jO9qfcPa7g1Z8Z3SDWeCvSUr1krZdKLbXZH3pRwZY0rodkX-3DmHMNHkaDlnZwHpKQ3eebCTT5HWMx2QDr6MmEutrGk-YArpqSoC7fFgn33Kawp5LpMNwf--GH_6iJOHsqY2DtQle_LxidreBz_Ny7gxhXnMaZwDRrwFDOEcUkEabUzO95j_vZZ0qdR05QN552woePNyX5MfX-6-7781D49f7_efHxrYSjk1HC0yKSRXHWotrOtxkL0cVC_AcdjunNUdCBBKag5OaqVADRK4lrwftOquyadL37rcrzOWyRzTOcc60rRcqK3cMiGqSl9UkFMpGZ0Zsz_ZPBvOzELGHM0rMmYhs3xVMtW7v3ixxnj2mE1VYQQcfK4szJD8f3T5C4bCo4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157464055</pqid></control><display><type>article</type><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</creator><creatorcontrib>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</creatorcontrib><description>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.10.023</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Anhydrides ; Cellulose ; Cellulose nanofiber ; Computed tomography ; Crystallization ; Dispersion ; Foaming ; Foams ; Fourier transforms ; Infrared spectroscopy ; Injection molding ; Kinetics ; Morphology ; Nanocomposites ; Nanofibers ; Polypropylene ; Rheological properties ; Rheology ; Surface modification ; X ray imagery</subject><ispartof>Composites science and technology, 2018-11, Vol.168, p.412-419</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</citedby><cites>FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</cites><orcidid>0000-0001-5942-5095 ; 0000-0002-4265-1149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2018.10.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Okada, Kiyomi</creatorcontrib><creatorcontrib>Sodenaga, Minami</creatorcontrib><creatorcontrib>Hikima, Yuta</creatorcontrib><creatorcontrib>Ohshima, Masahiro</creatorcontrib><creatorcontrib>Sekiguchi, Takafumi</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><title>Composites science and technology</title><description>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</description><subject>Anhydrides</subject><subject>Cellulose</subject><subject>Cellulose nanofiber</subject><subject>Computed tomography</subject><subject>Crystallization</subject><subject>Dispersion</subject><subject>Foaming</subject><subject>Foams</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Injection molding</subject><subject>Kinetics</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Polypropylene</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Surface modification</subject><subject>X ray imagery</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkcFuGyEQhlHVSnHTvANVr14Hdg2YY2WlbaRIubRnxM4OMS6GLawjbd-ob1m2ziHHSkig4f9n5tdHyEfONpxxeXvcQDqNBfyEcNi0jO9qfcPa7g1Z8Z3SDWeCvSUr1krZdKLbXZH3pRwZY0rodkX-3DmHMNHkaDlnZwHpKQ3eebCTT5HWMx2QDr6MmEutrGk-YArpqSoC7fFgn33Kawp5LpMNwf--GH_6iJOHsqY2DtQle_LxidreBz_Ny7gxhXnMaZwDRrwFDOEcUkEabUzO95j_vZZ0qdR05QN552woePNyX5MfX-6-7781D49f7_efHxrYSjk1HC0yKSRXHWotrOtxkL0cVC_AcdjunNUdCBBKag5OaqVADRK4lrwftOquyadL37rcrzOWyRzTOcc60rRcqK3cMiGqSl9UkFMpGZ0Zsz_ZPBvOzELGHM0rMmYhs3xVMtW7v3ixxnj2mE1VYQQcfK4szJD8f3T5C4bCo4g</recordid><startdate>20181110</startdate><enddate>20181110</enddate><creator>Wang, Long</creator><creator>Okada, Kiyomi</creator><creator>Sodenaga, Minami</creator><creator>Hikima, Yuta</creator><creator>Ohshima, Masahiro</creator><creator>Sekiguchi, Takafumi</creator><creator>Yano, Hiroyuki</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5942-5095</orcidid><orcidid>https://orcid.org/0000-0002-4265-1149</orcidid></search><sort><creationdate>20181110</creationdate><title>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</title><author>Wang, Long ; Okada, Kiyomi ; Sodenaga, Minami ; Hikima, Yuta ; Ohshima, Masahiro ; Sekiguchi, Takafumi ; Yano, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-1eae0656173e995afbed6b6d7b5cf1c48fa93c5c57691cf6977c7d6c1961bd973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anhydrides</topic><topic>Cellulose</topic><topic>Cellulose nanofiber</topic><topic>Computed tomography</topic><topic>Crystallization</topic><topic>Dispersion</topic><topic>Foaming</topic><topic>Foams</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Injection molding</topic><topic>Kinetics</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Polypropylene</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Surface modification</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Okada, Kiyomi</creatorcontrib><creatorcontrib>Sodenaga, Minami</creatorcontrib><creatorcontrib>Hikima, Yuta</creatorcontrib><creatorcontrib>Ohshima, Masahiro</creatorcontrib><creatorcontrib>Sekiguchi, Takafumi</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Long</au><au>Okada, Kiyomi</au><au>Sodenaga, Minami</au><au>Hikima, Yuta</au><au>Ohshima, Masahiro</au><au>Sekiguchi, Takafumi</au><au>Yano, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites</atitle><jtitle>Composites science and technology</jtitle><date>2018-11-10</date><risdate>2018</risdate><volume>168</volume><spage>412</spage><epage>419</epage><pages>412-419</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Herein, the issue of dispersing cellulose nanofiber (CNF) in hydrophobic polymer has been solved through the modification of the CNF surface using alkenyl succinic anhydride (ASA). Polypropylene (PP) nanocomposites containing CNF with various degrees of substitution (DS)−ranging from 0 to 0.4−were prepared by melting and blending in an extruder. Fourier transform infrared spectroscopy (FTIR) results illustrated that the ASA chains were successfully incorporated into the CNF, and the FTIR spectroscopic imaging and X-ray computed tomography demonstrated the well-dispersed hydrophobic-modified CNF with the highest DS (=0.4) in the PP matrix. Rheological results revealed that a network-like structure of CNF was generated in the PP/CNF nanocomposites. Compared with isotactic PP, the PP/CNF composites exhibited improved crystallization kinetics, which could be elucidated via fast scanning chip calorimetry (FSC) analysis. Finally, the foaming performance of the prepared composites was examined using an easily scaled foam injection molding technique. The incorporation of CNF remarkably ameliorated the cellular morphologies of PP foams, resulting in a sharp decrease in cell size and a notable enhancement in cell density.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.10.023</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5942-5095</orcidid><orcidid>https://orcid.org/0000-0002-4265-1149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2018-11, Vol.168, p.412-419 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2157464055 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anhydrides Cellulose Cellulose nanofiber Computed tomography Crystallization Dispersion Foaming Foams Fourier transforms Infrared spectroscopy Injection molding Kinetics Morphology Nanocomposites Nanofibers Polypropylene Rheological properties Rheology Surface modification X ray imagery |
title | Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20modification%20on%20the%20dispersion,%20rheological%20behavior,%20crystallization%20kinetics,%20and%20foaming%20ability%20of%20polypropylene/cellulose%20nanofiber%20nanocomposites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Wang,%20Long&rft.date=2018-11-10&rft.volume=168&rft.spage=412&rft.epage=419&rft.pages=412-419&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.10.023&rft_dat=%3Cproquest_cross%3E2157464055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157464055&rft_id=info:pmid/&rft_els_id=S0266353818320001&rfr_iscdi=true |