Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting

Developing active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-12, Vol.28 (51), p.n/a
Hauptverfasser: Guo, Yingying, Yuan, Pengfei, Zhang, Jianan, Xia, Huicong, Cheng, Fangyi, Zhou, Mengfan, Li, Jin, Qiao, Yueyang, Mu, Shichun, Xu, Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page
container_title Advanced functional materials
container_volume 28
creator Guo, Yingying
Yuan, Pengfei
Zhang, Jianan
Xia, Huicong
Cheng, Fangyi
Zhou, Mengfan
Li, Jin
Qiao, Yueyang
Mu, Shichun
Xu, Qun
description Developing active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (Co2P)–cobalt nitride (CoN) core–shell nanoparticles with double active sites encapsulated in nitrogen‐doped carbon nanotubes (Co2P/CoN‐in‐NCNTs) by straight forward pyrolysis method. Both density functional theory calculation and experimental results reveal that pyrrole nitrogen coupled with Co2P is the most active one for HER, while Co–N–C active sites existing on the interfaces between CoN and N‐doped carbon shells are responsible for the ORR and OER activity in this catalyst. Furthermore, liquid‐state and all‐solid‐state Zn–air batteries are equipped. Co2P/CoN‐in‐NCNTs show high power density as high as 194.6 mW cm−2, high gravimetric energy density of 844.5 W h kg−1, very low charge–discharge polarization, and excellent reversibility of 96 h at 5 mA cm−2 in liquid system. Moreover, the Co2P/CoN‐in‐NCNTs profiles confirm excellent activity for water splitting. Dicobalt phosphide–cobalt nitride core–shell particles act as double active centers and are encapsulated into the channel of N‐doped carbon nanotubes by an in situ one‐step self‐assembly and confined pyrolysis approach, which is demonstrated to afford trifunctional performance in catalyzing hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction for Zn–air batteries and water splitting.
doi_str_mv 10.1002/adfm.201805641
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2157429307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157429307</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2991-925ec452fa4ec94db2bfb82b9f3ec61a95170e9bd71fb3db2968abf91d37faa33</originalsourceid><addsrcrecordid>eNo9UdtOGzEQXVVFKoW-8jxSXxvwZS9x39JNaJBoqLiIqi-r8a6NHC12sL1FecsnIPFLfAlfUkegvMzMmTlzNKOTZUeUHFNC2Al2-v6YETomRZnTD9k-LWk54oSNP-5q-udT9jmEJSG0qni-n73Ujv1-3TzXbgFTN8hewaSN5p-CWtmofIDaWW2s6sBYWLxunqZulUCNXrrUQOviINV3mKvEdiH6oY2Dxx5m9i6tKW_sHWjn4dobPdik7Wya1hixXwcTILpH9B3MZ5ff4OJyG7YV2g7-2nTYxHj4gTGJGxVg6tNpFm4xYbha9SbGpH-Y7Wnsg_ryng-ym9PZdT0fnV_8PKsn56MlE4KOBCtUmxdMY65akXeSSS3HTArNVVtSFAWtiBKyq6iWPI1FOUapBe14pRE5P8i-vumuvHsYVIjN0g0-vRMaRosqZ4KTKrHEG-vR9GrdrLy5R79uKGm2NjVbm5qdTc1kevprh_h_94eOZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157429307</pqid></control><display><type>article</type><title>Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting</title><source>Access via Wiley Online Library</source><creator>Guo, Yingying ; Yuan, Pengfei ; Zhang, Jianan ; Xia, Huicong ; Cheng, Fangyi ; Zhou, Mengfan ; Li, Jin ; Qiao, Yueyang ; Mu, Shichun ; Xu, Qun</creator><creatorcontrib>Guo, Yingying ; Yuan, Pengfei ; Zhang, Jianan ; Xia, Huicong ; Cheng, Fangyi ; Zhou, Mengfan ; Li, Jin ; Qiao, Yueyang ; Mu, Shichun ; Xu, Qun</creatorcontrib><description>Developing active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (Co2P)–cobalt nitride (CoN) core–shell nanoparticles with double active sites encapsulated in nitrogen‐doped carbon nanotubes (Co2P/CoN‐in‐NCNTs) by straight forward pyrolysis method. Both density functional theory calculation and experimental results reveal that pyrrole nitrogen coupled with Co2P is the most active one for HER, while Co–N–C active sites existing on the interfaces between CoN and N‐doped carbon shells are responsible for the ORR and OER activity in this catalyst. Furthermore, liquid‐state and all‐solid‐state Zn–air batteries are equipped. Co2P/CoN‐in‐NCNTs show high power density as high as 194.6 mW cm−2, high gravimetric energy density of 844.5 W h kg−1, very low charge–discharge polarization, and excellent reversibility of 96 h at 5 mA cm−2 in liquid system. Moreover, the Co2P/CoN‐in‐NCNTs profiles confirm excellent activity for water splitting. Dicobalt phosphide–cobalt nitride core–shell particles act as double active centers and are encapsulated into the channel of N‐doped carbon nanotubes by an in situ one‐step self‐assembly and confined pyrolysis approach, which is demonstrated to afford trifunctional performance in catalyzing hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction for Zn–air batteries and water splitting.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201805641</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon ; Carbon nanotubes ; Catalysis ; Co2P ; Co–N ; Density functional theory ; Electrocatalysts ; flexible Zn–air batteries ; Flux density ; Gravimetry ; Hydrogen evolution reactions ; Hydrogen storage ; Materials science ; Metal air batteries ; Nanoparticles ; Nitrogen ; N‐doped carbon nanotubes ; Oxygen evolution reactions ; Oxygen reduction reactions ; Phosphides ; Pyrolysis ; trifunctional electrocatalysts ; Water splitting ; Zinc-oxygen batteries</subject><ispartof>Advanced functional materials, 2018-12, Vol.28 (51), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8206-2947 ; 0000-0002-1853-089X ; 0000-0002-9400-1500 ; 0000-0003-3469-0014 ; 0000-0002-2264-0266 ; 0000-0002-7559-1090 ; 0000-0003-3902-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201805641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201805641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Yingying</creatorcontrib><creatorcontrib>Yuan, Pengfei</creatorcontrib><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>Xia, Huicong</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Zhou, Mengfan</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Qiao, Yueyang</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><title>Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting</title><title>Advanced functional materials</title><description>Developing active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (Co2P)–cobalt nitride (CoN) core–shell nanoparticles with double active sites encapsulated in nitrogen‐doped carbon nanotubes (Co2P/CoN‐in‐NCNTs) by straight forward pyrolysis method. Both density functional theory calculation and experimental results reveal that pyrrole nitrogen coupled with Co2P is the most active one for HER, while Co–N–C active sites existing on the interfaces between CoN and N‐doped carbon shells are responsible for the ORR and OER activity in this catalyst. Furthermore, liquid‐state and all‐solid‐state Zn–air batteries are equipped. Co2P/CoN‐in‐NCNTs show high power density as high as 194.6 mW cm−2, high gravimetric energy density of 844.5 W h kg−1, very low charge–discharge polarization, and excellent reversibility of 96 h at 5 mA cm−2 in liquid system. Moreover, the Co2P/CoN‐in‐NCNTs profiles confirm excellent activity for water splitting. Dicobalt phosphide–cobalt nitride core–shell particles act as double active centers and are encapsulated into the channel of N‐doped carbon nanotubes by an in situ one‐step self‐assembly and confined pyrolysis approach, which is demonstrated to afford trifunctional performance in catalyzing hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction for Zn–air batteries and water splitting.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Co2P</subject><subject>Co–N</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>flexible Zn–air batteries</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen storage</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>N‐doped carbon nanotubes</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Phosphides</subject><subject>Pyrolysis</subject><subject>trifunctional electrocatalysts</subject><subject>Water splitting</subject><subject>Zinc-oxygen batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UdtOGzEQXVVFKoW-8jxSXxvwZS9x39JNaJBoqLiIqi-r8a6NHC12sL1FecsnIPFLfAlfUkegvMzMmTlzNKOTZUeUHFNC2Al2-v6YETomRZnTD9k-LWk54oSNP-5q-udT9jmEJSG0qni-n73Ujv1-3TzXbgFTN8hewaSN5p-CWtmofIDaWW2s6sBYWLxunqZulUCNXrrUQOviINV3mKvEdiH6oY2Dxx5m9i6tKW_sHWjn4dobPdik7Wya1hixXwcTILpH9B3MZ5ff4OJyG7YV2g7-2nTYxHj4gTGJGxVg6tNpFm4xYbha9SbGpH-Y7Wnsg_ryng-ym9PZdT0fnV_8PKsn56MlE4KOBCtUmxdMY65akXeSSS3HTArNVVtSFAWtiBKyq6iWPI1FOUapBe14pRE5P8i-vumuvHsYVIjN0g0-vRMaRosqZ4KTKrHEG-vR9GrdrLy5R79uKGm2NjVbm5qdTc1kevprh_h_94eOZA</recordid><startdate>20181219</startdate><enddate>20181219</enddate><creator>Guo, Yingying</creator><creator>Yuan, Pengfei</creator><creator>Zhang, Jianan</creator><creator>Xia, Huicong</creator><creator>Cheng, Fangyi</creator><creator>Zhou, Mengfan</creator><creator>Li, Jin</creator><creator>Qiao, Yueyang</creator><creator>Mu, Shichun</creator><creator>Xu, Qun</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8206-2947</orcidid><orcidid>https://orcid.org/0000-0002-1853-089X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0003-3469-0014</orcidid><orcidid>https://orcid.org/0000-0002-2264-0266</orcidid><orcidid>https://orcid.org/0000-0002-7559-1090</orcidid><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></search><sort><creationdate>20181219</creationdate><title>Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting</title><author>Guo, Yingying ; Yuan, Pengfei ; Zhang, Jianan ; Xia, Huicong ; Cheng, Fangyi ; Zhou, Mengfan ; Li, Jin ; Qiao, Yueyang ; Mu, Shichun ; Xu, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2991-925ec452fa4ec94db2bfb82b9f3ec61a95170e9bd71fb3db2968abf91d37faa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Co2P</topic><topic>Co–N</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>flexible Zn–air batteries</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen storage</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>N‐doped carbon nanotubes</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Phosphides</topic><topic>Pyrolysis</topic><topic>trifunctional electrocatalysts</topic><topic>Water splitting</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yingying</creatorcontrib><creatorcontrib>Yuan, Pengfei</creatorcontrib><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>Xia, Huicong</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Zhou, Mengfan</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Qiao, Yueyang</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yingying</au><au>Yuan, Pengfei</au><au>Zhang, Jianan</au><au>Xia, Huicong</au><au>Cheng, Fangyi</au><au>Zhou, Mengfan</au><au>Li, Jin</au><au>Qiao, Yueyang</au><au>Mu, Shichun</au><au>Xu, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting</atitle><jtitle>Advanced functional materials</jtitle><date>2018-12-19</date><risdate>2018</risdate><volume>28</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (Co2P)–cobalt nitride (CoN) core–shell nanoparticles with double active sites encapsulated in nitrogen‐doped carbon nanotubes (Co2P/CoN‐in‐NCNTs) by straight forward pyrolysis method. Both density functional theory calculation and experimental results reveal that pyrrole nitrogen coupled with Co2P is the most active one for HER, while Co–N–C active sites existing on the interfaces between CoN and N‐doped carbon shells are responsible for the ORR and OER activity in this catalyst. Furthermore, liquid‐state and all‐solid‐state Zn–air batteries are equipped. Co2P/CoN‐in‐NCNTs show high power density as high as 194.6 mW cm−2, high gravimetric energy density of 844.5 W h kg−1, very low charge–discharge polarization, and excellent reversibility of 96 h at 5 mA cm−2 in liquid system. Moreover, the Co2P/CoN‐in‐NCNTs profiles confirm excellent activity for water splitting. Dicobalt phosphide–cobalt nitride core–shell particles act as double active centers and are encapsulated into the channel of N‐doped carbon nanotubes by an in situ one‐step self‐assembly and confined pyrolysis approach, which is demonstrated to afford trifunctional performance in catalyzing hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction for Zn–air batteries and water splitting.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201805641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8206-2947</orcidid><orcidid>https://orcid.org/0000-0002-1853-089X</orcidid><orcidid>https://orcid.org/0000-0002-9400-1500</orcidid><orcidid>https://orcid.org/0000-0003-3469-0014</orcidid><orcidid>https://orcid.org/0000-0002-2264-0266</orcidid><orcidid>https://orcid.org/0000-0002-7559-1090</orcidid><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-12, Vol.28 (51), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2157429307
source Access via Wiley Online Library
subjects Batteries
Carbon
Carbon nanotubes
Catalysis
Co2P
Co–N
Density functional theory
Electrocatalysts
flexible Zn–air batteries
Flux density
Gravimetry
Hydrogen evolution reactions
Hydrogen storage
Materials science
Metal air batteries
Nanoparticles
Nitrogen
N‐doped carbon nanotubes
Oxygen evolution reactions
Oxygen reduction reactions
Phosphides
Pyrolysis
trifunctional electrocatalysts
Water splitting
Zinc-oxygen batteries
title Co2P–CoN Double Active Centers Confined in N‐Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co2P%E2%80%93CoN%20Double%20Active%20Centers%20Confined%20in%20N%E2%80%90Doped%20Carbon%20Nanotube:%20Heterostructural%20Engineering%20for%20Trifunctional%20Catalysis%20toward%20HER,%20ORR,%20OER,%20and%20Zn%E2%80%93Air%20Batteries%20Driven%20Water%20Splitting&rft.jtitle=Advanced%20functional%20materials&rft.au=Guo,%20Yingying&rft.date=2018-12-19&rft.volume=28&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201805641&rft_dat=%3Cproquest_wiley%3E2157429307%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157429307&rft_id=info:pmid/&rfr_iscdi=true