Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems

Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2019-01, Vol.26 (1), p.e2287-n/a
Hauptverfasser: Chaabane, Marwa, Mansouri, Majdi, Ben Hamida, Ahmed, Nounou, Hazem, Nounou, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2287
container_title Structural control and health monitoring
container_volume 26
creator Chaabane, Marwa
Mansouri, Majdi
Ben Hamida, Ahmed
Nounou, Hazem
Nounou, Mohamed
description Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.
doi_str_mv 10.1002/stc.2287
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157400876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157400876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</originalsourceid><addsrcrecordid>eNp10M1OAyEUBWBiNLFWEx-BxI2bqcCUYbo0jX-JxoV1TRgGOjTToXIZzez6CD6jTyK1xp0rWHycyz0InVMyoYSwK4h6wlgpDtCI8inPGCvyw78758foBGCVZMFKPkLbp76N7l0Fp6LBEFV0EJ1WLd4Erw0A1r6Lwbdf289KgalxM2x8bAw4wNEk2y2x9QHXaq2WBtcmGh2d77DrUlzodexDSmuMamOD175z0YfdIxggmjWcoiOrWjBnv-cYvd7eLOb32ePz3cP8-jHTueAiK-ucV6qmdW0ZV8oWVFTU0poUosiFMNTkvCitEKW2lFleCTulhFNSCjIjfJaP0cU-N-311qePy5XvQ5dGSka5mJIki6Qu90oHDxCMlZvg1ioMkhK561emfuWu30SzPf1wrRn-dfJlMf_x3xMCgEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157400876</pqid></control><display><type>article</type><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</creator><creatorcontrib>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</creatorcontrib><description>Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2287</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>Civil engineers ; Computer simulation ; Control charts ; Damage assessment ; Damage detection ; Decision making ; exponentially weighted moving average ; False alarms ; generalized likelihood ratio test ; Least squares ; Likelihood ratio ; multiscale ; Multiscale analysis ; Optimization ; partial least squares ; Process control ; Process controls ; Statistical analysis ; Statistical process control ; Structural damage ; Structural health monitoring ; Weight</subject><ispartof>Structural control and health monitoring, 2019-01, Vol.26 (1), p.e2287-n/a</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</citedby><cites>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</cites><orcidid>0000-0001-6390-4304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chaabane, Marwa</creatorcontrib><creatorcontrib>Mansouri, Majdi</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Nounou, Hazem</creatorcontrib><creatorcontrib>Nounou, Mohamed</creatorcontrib><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><title>Structural control and health monitoring</title><description>Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</description><subject>Civil engineers</subject><subject>Computer simulation</subject><subject>Control charts</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Decision making</subject><subject>exponentially weighted moving average</subject><subject>False alarms</subject><subject>generalized likelihood ratio test</subject><subject>Least squares</subject><subject>Likelihood ratio</subject><subject>multiscale</subject><subject>Multiscale analysis</subject><subject>Optimization</subject><subject>partial least squares</subject><subject>Process control</subject><subject>Process controls</subject><subject>Statistical analysis</subject><subject>Statistical process control</subject><subject>Structural damage</subject><subject>Structural health monitoring</subject><subject>Weight</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAyEUBWBiNLFWEx-BxI2bqcCUYbo0jX-JxoV1TRgGOjTToXIZzez6CD6jTyK1xp0rWHycyz0InVMyoYSwK4h6wlgpDtCI8inPGCvyw78758foBGCVZMFKPkLbp76N7l0Fp6LBEFV0EJ1WLd4Erw0A1r6Lwbdf289KgalxM2x8bAw4wNEk2y2x9QHXaq2WBtcmGh2d77DrUlzodexDSmuMamOD175z0YfdIxggmjWcoiOrWjBnv-cYvd7eLOb32ePz3cP8-jHTueAiK-ucV6qmdW0ZV8oWVFTU0poUosiFMNTkvCitEKW2lFleCTulhFNSCjIjfJaP0cU-N-311qePy5XvQ5dGSka5mJIki6Qu90oHDxCMlZvg1ioMkhK561emfuWu30SzPf1wrRn-dfJlMf_x3xMCgEc</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chaabane, Marwa</creator><creator>Mansouri, Majdi</creator><creator>Ben Hamida, Ahmed</creator><creator>Nounou, Hazem</creator><creator>Nounou, Mohamed</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6390-4304</orcidid></search><sort><creationdate>201901</creationdate><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><author>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Civil engineers</topic><topic>Computer simulation</topic><topic>Control charts</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Decision making</topic><topic>exponentially weighted moving average</topic><topic>False alarms</topic><topic>generalized likelihood ratio test</topic><topic>Least squares</topic><topic>Likelihood ratio</topic><topic>multiscale</topic><topic>Multiscale analysis</topic><topic>Optimization</topic><topic>partial least squares</topic><topic>Process control</topic><topic>Process controls</topic><topic>Statistical analysis</topic><topic>Statistical process control</topic><topic>Structural damage</topic><topic>Structural health monitoring</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaabane, Marwa</creatorcontrib><creatorcontrib>Mansouri, Majdi</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Nounou, Hazem</creatorcontrib><creatorcontrib>Nounou, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaabane, Marwa</au><au>Mansouri, Majdi</au><au>Ben Hamida, Ahmed</au><au>Nounou, Hazem</au><au>Nounou, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</atitle><jtitle>Structural control and health monitoring</jtitle><date>2019-01</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>e2287</spage><epage>n/a</epage><pages>e2287-n/a</pages><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2287</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6390-4304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-2255
ispartof Structural control and health monitoring, 2019-01, Vol.26 (1), p.e2287-n/a
issn 1545-2255
1545-2263
language eng
recordid cdi_proquest_journals_2157400876
source Wiley Online Library Journals Frontfile Complete
subjects Civil engineers
Computer simulation
Control charts
Damage assessment
Damage detection
Decision making
exponentially weighted moving average
False alarms
generalized likelihood ratio test
Least squares
Likelihood ratio
multiscale
Multiscale analysis
Optimization
partial least squares
Process control
Process controls
Statistical analysis
Statistical process control
Structural damage
Structural health monitoring
Weight
title Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20statistical%20process%20control%E2%80%90based%20hypothesis%20testing%20for%20damage%20detection%20in%20structural%20health%20monitoring%20systems&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Chaabane,%20Marwa&rft.date=2019-01&rft.volume=26&rft.issue=1&rft.spage=e2287&rft.epage=n/a&rft.pages=e2287-n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2287&rft_dat=%3Cproquest_cross%3E2157400876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157400876&rft_id=info:pmid/&rfr_iscdi=true