Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems
Summary The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed techniq...
Gespeichert in:
Veröffentlicht in: | Structural control and health monitoring 2019-01, Vol.26 (1), p.e2287-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2287 |
container_title | Structural control and health monitoring |
container_volume | 26 |
creator | Chaabane, Marwa Mansouri, Majdi Ben Hamida, Ahmed Nounou, Hazem Nounou, Mohamed |
description | Summary
The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values. |
doi_str_mv | 10.1002/stc.2287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2157400876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157400876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</originalsourceid><addsrcrecordid>eNp10M1OAyEUBWBiNLFWEx-BxI2bqcCUYbo0jX-JxoV1TRgGOjTToXIZzez6CD6jTyK1xp0rWHycyz0InVMyoYSwK4h6wlgpDtCI8inPGCvyw78758foBGCVZMFKPkLbp76N7l0Fp6LBEFV0EJ1WLd4Erw0A1r6Lwbdf289KgalxM2x8bAw4wNEk2y2x9QHXaq2WBtcmGh2d77DrUlzodexDSmuMamOD175z0YfdIxggmjWcoiOrWjBnv-cYvd7eLOb32ePz3cP8-jHTueAiK-ucV6qmdW0ZV8oWVFTU0poUosiFMNTkvCitEKW2lFleCTulhFNSCjIjfJaP0cU-N-311qePy5XvQ5dGSka5mJIki6Qu90oHDxCMlZvg1ioMkhK561emfuWu30SzPf1wrRn-dfJlMf_x3xMCgEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157400876</pqid></control><display><type>article</type><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</creator><creatorcontrib>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</creatorcontrib><description>Summary
The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2287</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>Civil engineers ; Computer simulation ; Control charts ; Damage assessment ; Damage detection ; Decision making ; exponentially weighted moving average ; False alarms ; generalized likelihood ratio test ; Least squares ; Likelihood ratio ; multiscale ; Multiscale analysis ; Optimization ; partial least squares ; Process control ; Process controls ; Statistical analysis ; Statistical process control ; Structural damage ; Structural health monitoring ; Weight</subject><ispartof>Structural control and health monitoring, 2019-01, Vol.26 (1), p.e2287-n/a</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</citedby><cites>FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</cites><orcidid>0000-0001-6390-4304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chaabane, Marwa</creatorcontrib><creatorcontrib>Mansouri, Majdi</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Nounou, Hazem</creatorcontrib><creatorcontrib>Nounou, Mohamed</creatorcontrib><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><title>Structural control and health monitoring</title><description>Summary
The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</description><subject>Civil engineers</subject><subject>Computer simulation</subject><subject>Control charts</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Decision making</subject><subject>exponentially weighted moving average</subject><subject>False alarms</subject><subject>generalized likelihood ratio test</subject><subject>Least squares</subject><subject>Likelihood ratio</subject><subject>multiscale</subject><subject>Multiscale analysis</subject><subject>Optimization</subject><subject>partial least squares</subject><subject>Process control</subject><subject>Process controls</subject><subject>Statistical analysis</subject><subject>Statistical process control</subject><subject>Structural damage</subject><subject>Structural health monitoring</subject><subject>Weight</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAyEUBWBiNLFWEx-BxI2bqcCUYbo0jX-JxoV1TRgGOjTToXIZzez6CD6jTyK1xp0rWHycyz0InVMyoYSwK4h6wlgpDtCI8inPGCvyw78758foBGCVZMFKPkLbp76N7l0Fp6LBEFV0EJ1WLd4Erw0A1r6Lwbdf289KgalxM2x8bAw4wNEk2y2x9QHXaq2WBtcmGh2d77DrUlzodexDSmuMamOD175z0YfdIxggmjWcoiOrWjBnv-cYvd7eLOb32ePz3cP8-jHTueAiK-ucV6qmdW0ZV8oWVFTU0poUosiFMNTkvCitEKW2lFleCTulhFNSCjIjfJaP0cU-N-311qePy5XvQ5dGSka5mJIki6Qu90oHDxCMlZvg1ioMkhK561emfuWu30SzPf1wrRn-dfJlMf_x3xMCgEc</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chaabane, Marwa</creator><creator>Mansouri, Majdi</creator><creator>Ben Hamida, Ahmed</creator><creator>Nounou, Hazem</creator><creator>Nounou, Mohamed</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6390-4304</orcidid></search><sort><creationdate>201901</creationdate><title>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</title><author>Chaabane, Marwa ; Mansouri, Majdi ; Ben Hamida, Ahmed ; Nounou, Hazem ; Nounou, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3757-8d35bad1ddf25aaf617b1f1d0676377e1e3568f778cf12f5b7f41051087090593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Civil engineers</topic><topic>Computer simulation</topic><topic>Control charts</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Decision making</topic><topic>exponentially weighted moving average</topic><topic>False alarms</topic><topic>generalized likelihood ratio test</topic><topic>Least squares</topic><topic>Likelihood ratio</topic><topic>multiscale</topic><topic>Multiscale analysis</topic><topic>Optimization</topic><topic>partial least squares</topic><topic>Process control</topic><topic>Process controls</topic><topic>Statistical analysis</topic><topic>Statistical process control</topic><topic>Structural damage</topic><topic>Structural health monitoring</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaabane, Marwa</creatorcontrib><creatorcontrib>Mansouri, Majdi</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Nounou, Hazem</creatorcontrib><creatorcontrib>Nounou, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaabane, Marwa</au><au>Mansouri, Majdi</au><au>Ben Hamida, Ahmed</au><au>Nounou, Hazem</au><au>Nounou, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems</atitle><jtitle>Structural control and health monitoring</jtitle><date>2019-01</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>e2287</spage><epage>n/a</epage><pages>e2287-n/a</pages><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary
The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input‐output model partial least square (PLS) and multi‐objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA‐GLRT chart. The idea behind the developed OEWMA‐GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL1). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control‐American society of Civil engineers (IASC‐ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS‐based OEWMA‐GLRT technique over the PLS‐based GLRT, PLS‐based OEWMA, and PLS‐based OEWMA‐GLRT methods in terms of MDR, FAR, and ARL1 values.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2287</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6390-4304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-2255 |
ispartof | Structural control and health monitoring, 2019-01, Vol.26 (1), p.e2287-n/a |
issn | 1545-2255 1545-2263 |
language | eng |
recordid | cdi_proquest_journals_2157400876 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Civil engineers Computer simulation Control charts Damage assessment Damage detection Decision making exponentially weighted moving average False alarms generalized likelihood ratio test Least squares Likelihood ratio multiscale Multiscale analysis Optimization partial least squares Process control Process controls Statistical analysis Statistical process control Structural damage Structural health monitoring Weight |
title | Multivariate statistical process control‐based hypothesis testing for damage detection in structural health monitoring systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20statistical%20process%20control%E2%80%90based%20hypothesis%20testing%20for%20damage%20detection%20in%20structural%20health%20monitoring%20systems&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Chaabane,%20Marwa&rft.date=2019-01&rft.volume=26&rft.issue=1&rft.spage=e2287&rft.epage=n/a&rft.pages=e2287-n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2287&rft_dat=%3Cproquest_cross%3E2157400876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157400876&rft_id=info:pmid/&rfr_iscdi=true |