Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics

Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (L^sub α^) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2004-10, Vol.87 (4), p.2107
Hauptverfasser: Nielsen, Steve O, Lopez, Carlos F, Ivanov, Ivaylo, Moore, Preston B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2107
container_title Biophysical journal
container_volume 87
creator Nielsen, Steve O
Lopez, Carlos F
Ivanov, Ivaylo
Moore, Preston B
description Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (L^sub α^) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L^sub α^-to-inverse hexagonal (H^sub II^) peptide-induced phase transition. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_215712832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>724442951</sourcerecordid><originalsourceid>FETCH-proquest_journals_2157128323</originalsourceid><addsrcrecordid>eNqNjF1KAzEURoMoOFb3cPE9kGQ6tT7XX2ihYPvakk5u7S0zyZibCK5BcC9uwW7MUVyAT-fhfOc7EoWuhkYqNR4di0IpNZLl8Lo6FWfMe6W0qZQuxPsiWs8ttpueCHPsEjmUj97lGh1MqSMHTyEm8s9gvYMZ1jvriVsIW5iuOG_g8PH1uZIp9NUrxtRn851lhN9rShQ8LPmnnwQbGeV9tORhFhqsc2Mj3Lx521LN5-JkaxvGiz8OxOXd7WLyILsYXjJyWu9Djr5Xa6OrK23GpSn_NfoGGxlWXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215712832</pqid></control><display><type>article</type><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Nielsen, Steve O ; Lopez, Carlos F ; Ivanov, Ivaylo ; Moore, Preston B</creator><creatorcontrib>Nielsen, Steve O ; Lopez, Carlos F ; Ivanov, Ivaylo ; Moore, Preston B</creatorcontrib><description>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (L^sub α^) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L^sub α^-to-inverse hexagonal (H^sub II^) peptide-induced phase transition. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><language>eng</language><publisher>New York: Biophysical Society</publisher><subject>Lipids ; Membranes ; Molecular biology ; Peptides</subject><ispartof>Biophysical journal, 2004-10, Vol.87 (4), p.2107</ispartof><rights>Copyright Biophysical Society Oct 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Nielsen, Steve O</creatorcontrib><creatorcontrib>Lopez, Carlos F</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>Moore, Preston B</creatorcontrib><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><title>Biophysical journal</title><description>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (L^sub α^) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L^sub α^-to-inverse hexagonal (H^sub II^) peptide-induced phase transition. [PUBLICATION ABSTRACT]</description><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular biology</subject><subject>Peptides</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNjF1KAzEURoMoOFb3cPE9kGQ6tT7XX2ihYPvakk5u7S0zyZibCK5BcC9uwW7MUVyAT-fhfOc7EoWuhkYqNR4di0IpNZLl8Lo6FWfMe6W0qZQuxPsiWs8ttpueCHPsEjmUj97lGh1MqSMHTyEm8s9gvYMZ1jvriVsIW5iuOG_g8PH1uZIp9NUrxtRn851lhN9rShQ8LPmnnwQbGeV9tORhFhqsc2Mj3Lx521LN5-JkaxvGiz8OxOXd7WLyILsYXjJyWu9Djr5Xa6OrK23GpSn_NfoGGxlWXw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Nielsen, Steve O</creator><creator>Lopez, Carlos F</creator><creator>Ivanov, Ivaylo</creator><creator>Moore, Preston B</creator><general>Biophysical Society</general><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20041001</creationdate><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><author>Nielsen, Steve O ; Lopez, Carlos F ; Ivanov, Ivaylo ; Moore, Preston B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2157128323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular biology</topic><topic>Peptides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, Steve O</creatorcontrib><creatorcontrib>Lopez, Carlos F</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>Moore, Preston B</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, Steve O</au><au>Lopez, Carlos F</au><au>Ivanov, Ivaylo</au><au>Moore, Preston B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</atitle><jtitle>Biophysical journal</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>87</volume><issue>4</issue><spage>2107</spage><pages>2107-</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl-sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar (L^sub α^) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L^sub α^-to-inverse hexagonal (H^sub II^) peptide-induced phase transition. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Biophysical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2004-10, Vol.87 (4), p.2107
issn 0006-3495
1542-0086
language eng
recordid cdi_proquest_journals_215712832
source Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Lipids
Membranes
Molecular biology
Peptides
title Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L^sub α^-to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmembrane%20Peptide-Induced%20Lipid%20Sorting%20and%20Mechanism%20of%20L%5Esub%20%C3%8E%C2%B1%5E-to-Inverted%20Phase%20Transition%20Using%20Coarse-Grain%20Molecular%20Dynamics&rft.jtitle=Biophysical%20journal&rft.au=Nielsen,%20Steve%20O&rft.date=2004-10-01&rft.volume=87&rft.issue=4&rft.spage=2107&rft.pages=2107-&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/&rft_dat=%3Cproquest%3E724442951%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215712832&rft_id=info:pmid/&rfr_iscdi=true