Monomial integrals on the classical groups

This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2008-01, Vol.49 (1), p.013503-013503-20
Hauptverfasser: Gorin, T., López, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013503-20
container_issue 1
container_start_page 013503
container_title Journal of mathematical physics
container_volume 49
creator Gorin, T.
López, G. V.
description This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows us to compute a given monomial integral very efficiently. The result is always a rational function of the matrix dimension.
doi_str_mv 10.1063/1.2830520
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_215622160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1425871211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-bda10eb1e3b30c07a5344470fdfa62135aac58e1d2a86509efefb631a045c3433</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKsH_8EieLCwdSYfu-lFkOIXVLzoOWSzSd3SbtZkK_jvjbTWk-Jc5jDPPMO8hJwijBEKdoljKhkICntkgCAneVkIuU8GAJTmlEt5SI5iXAAgSs4HZPToW79q9DJr2t7Og17GzLdZ_2ozs9QxNiaN5sGvu3hMDlwa25NtH5KX25vn6X0-e7p7mF7PcsMR-7yqNYKt0LKKgYFSC8Y5L8HVThcUmdDaCGmxploWAibWWVcVDDVwYRhnbEjONt4u-Le1jb1a-HVo00lFURSUYgEJuthAJvgYg3WqC81Khw-FoL6SUKi2SST2fCvUMb3jgm5NE3cLFKBMxRN3teGiaXrdN779Xfodm9rFpnwSjP4t-At-9-EHVF3t2CcnU40X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215622160</pqid></control><display><type>article</type><title>Monomial integrals on the classical groups</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gorin, T. ; López, G. V.</creator><creatorcontrib>Gorin, T. ; López, G. V.</creatorcontrib><description>This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows us to compute a given monomial integral very efficiently. The result is always a rational function of the matrix dimension.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2830520</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Algebra ; Exact sciences and technology ; Integration ; Mathematical functions ; Mathematical methods in physics ; Mathematics ; Physics ; Polynomials ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2008-01, Vol.49 (1), p.013503-013503-20</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-bda10eb1e3b30c07a5344470fdfa62135aac58e1d2a86509efefb631a045c3433</citedby><cites>FETCH-LOGICAL-c411t-bda10eb1e3b30c07a5344470fdfa62135aac58e1d2a86509efefb631a045c3433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2830520$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,1556,4500,27907,27908,76135,76141</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20077774$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorin, T.</creatorcontrib><creatorcontrib>López, G. V.</creatorcontrib><title>Monomial integrals on the classical groups</title><title>Journal of mathematical physics</title><description>This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows us to compute a given monomial integral very efficiently. The result is always a rational function of the matrix dimension.</description><subject>Algebra</subject><subject>Exact sciences and technology</subject><subject>Integration</subject><subject>Mathematical functions</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKsH_8EieLCwdSYfu-lFkOIXVLzoOWSzSd3SbtZkK_jvjbTWk-Jc5jDPPMO8hJwijBEKdoljKhkICntkgCAneVkIuU8GAJTmlEt5SI5iXAAgSs4HZPToW79q9DJr2t7Og17GzLdZ_2ozs9QxNiaN5sGvu3hMDlwa25NtH5KX25vn6X0-e7p7mF7PcsMR-7yqNYKt0LKKgYFSC8Y5L8HVThcUmdDaCGmxploWAibWWVcVDDVwYRhnbEjONt4u-Le1jb1a-HVo00lFURSUYgEJuthAJvgYg3WqC81Khw-FoL6SUKi2SST2fCvUMb3jgm5NE3cLFKBMxRN3teGiaXrdN779Xfodm9rFpnwSjP4t-At-9-EHVF3t2CcnU40X</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Gorin, T.</creator><creator>López, G. V.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20080101</creationdate><title>Monomial integrals on the classical groups</title><author>Gorin, T. ; López, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-bda10eb1e3b30c07a5344470fdfa62135aac58e1d2a86509efefb631a045c3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Exact sciences and technology</topic><topic>Integration</topic><topic>Mathematical functions</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorin, T.</creatorcontrib><creatorcontrib>López, G. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorin, T.</au><au>López, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monomial integrals on the classical groups</atitle><jtitle>Journal of mathematical physics</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>49</volume><issue>1</issue><spage>013503</spage><epage>013503-20</epage><pages>013503-013503-20</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows us to compute a given monomial integral very efficiently. The result is always a rational function of the matrix dimension.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2830520</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2008-01, Vol.49 (1), p.013503-013503-20
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_215622160
source AIP Journals Complete; AIP Digital Archive
subjects Algebra
Exact sciences and technology
Integration
Mathematical functions
Mathematical methods in physics
Mathematics
Physics
Polynomials
Sciences and techniques of general use
title Monomial integrals on the classical groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monomial%20integrals%20on%20the%20classical%20groups&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Gorin,%20T.&rft.date=2008-01-01&rft.volume=49&rft.issue=1&rft.spage=013503&rft.epage=013503-20&rft.pages=013503-013503-20&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2830520&rft_dat=%3Cproquest_scita%3E1425871211%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215622160&rft_id=info:pmid/&rfr_iscdi=true