Chern-Simons matrix models and Stieltjes-Wigert polynomials

Employing the random matrix formulation of Chern-Simons theory on Seifert manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful in exact computations in Chern-Simons matrix models. We construct a biorthogonal extension of the Stieltjes-Wigert polynomials, not available in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2007-02, Vol.48 (2), p.023507-023507-20
Hauptverfasser: Dolivet, Yacine, Tierz, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Employing the random matrix formulation of Chern-Simons theory on Seifert manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful in exact computations in Chern-Simons matrix models. We construct a biorthogonal extension of the Stieltjes-Wigert polynomials, not available in the literature, necessary to study Chern-Simons matrix models when the geometry is a lens space. We also study the relationship between Stieltjes-Wigert and Rogers-Szegö polynomials and the corresponding equivalence with a unitary matrix model. Finally, we give a detailed proof of a result that relates quantum dimensions with averages of Schur polynomials in the Stieltjes-Wigert ensemble.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2436734