Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem

A first-order hexahedral (H8)-element-based smoothed finite element method (S-FEM) with a volumetric-deviatoric split for nearly incompressible materials was developed for highly accurate deformation analysis of large-strain problems. In the proposed method, the isovolumetric part of the deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.940, p.84-88
Hauptverfasser: Oshiro, Kai, Fujikawa, Masaki, Miyakubo, Hiroka, Makabe, Chobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 84
container_title Materials science forum
container_volume 940
creator Oshiro, Kai
Fujikawa, Masaki
Miyakubo, Hiroka
Makabe, Chobin
description A first-order hexahedral (H8)-element-based smoothed finite element method (S-FEM) with a volumetric-deviatoric split for nearly incompressible materials was developed for highly accurate deformation analysis of large-strain problems. In the proposed method, the isovolumetric part of the deformation gradient at the integration point is derived from F based on the beta finite element method (i.e., an S-FEM), whereas the volumetric part of the deformation gradient is derived from F on the basis of the standard FEM with reduced integration elements. This method targets H8 elements that are automatically generated from tetrahedral elements, which makes it quite practical. This is because the FE mesh can be created automatically even if the targeted object has a complex shape. This method eliminates the phenomena of volumetric and shear locking, and reduces pressure oscillations. The proposed method was implemented in the commercial FE software Abaqus and applied to the large-deformation contact problem to verify its effectiveness.
doi_str_mv 10.4028/www.scientific.net/MSF.940.84
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2156187431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156187431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-2b524c83cf05c993822693bf7f2eca9ab60f3a247928679fe69269a944c3fc683</originalsourceid><addsrcrecordid>eNqNkF1LIzEUhoOsYFf9D4HFy5lmkkwmuRBxa7suKApVb0MmPdlGppNukm7Xf2-WLnjr1Xk5vB_wIHTRkJoTKqf7_b5O1sOYvfO2HiFP75eLWnFSS36EJo0QtFJdS7-gCaFtW7W8Eyfoa0qvhLBGNmKC4Bb-mjWsohmq7ybBCi83IeTywQs_-gx4PsCmTOB7yOuwws_Jj7_wSxh2G8jR2-oG_niTQ5F4uR18xi5EPAtjNjbjxxj6kj9Dx84MCc7_31P0vJg_zW6ru4cfP2fXd5VljPOK9i3lVjLrSGuVYpJSoVjvOkfBGmV6QRwzlHeKStEpB0IVg1GcW-askOwUfTv0bmP4vYOU9WvYxbFMatq0opEdZ01xXR5cNoaUIji9jX5j4ptuiP5HVhey-oOsLmR1IasLWS15yV8d8jmaMWWw64-ZzzW8AzKmiqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156187431</pqid></control><display><type>article</type><title>Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Oshiro, Kai ; Fujikawa, Masaki ; Miyakubo, Hiroka ; Makabe, Chobin</creator><creatorcontrib>Oshiro, Kai ; Fujikawa, Masaki ; Miyakubo, Hiroka ; Makabe, Chobin</creatorcontrib><description>A first-order hexahedral (H8)-element-based smoothed finite element method (S-FEM) with a volumetric-deviatoric split for nearly incompressible materials was developed for highly accurate deformation analysis of large-strain problems. In the proposed method, the isovolumetric part of the deformation gradient at the integration point is derived from F based on the beta finite element method (i.e., an S-FEM), whereas the volumetric part of the deformation gradient is derived from F on the basis of the standard FEM with reduced integration elements. This method targets H8 elements that are automatically generated from tetrahedral elements, which makes it quite practical. This is because the FE mesh can be created automatically even if the targeted object has a complex shape. This method eliminates the phenomena of volumetric and shear locking, and reduces pressure oscillations. The proposed method was implemented in the commercial FE software Abaqus and applied to the large-deformation contact problem to verify its effectiveness.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.940.84</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Finite element analysis ; Finite element method ; Nonlinear programming</subject><ispartof>Materials science forum, 2018-12, Vol.940, p.84-88</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-2b524c83cf05c993822693bf7f2eca9ab60f3a247928679fe69269a944c3fc683</citedby><cites>FETCH-LOGICAL-c3344-2b524c83cf05c993822693bf7f2eca9ab60f3a247928679fe69269a944c3fc683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4702?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2156187431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21389,21390,23256,27924,27925,33530,33703,34314,43659,43787,44067</link.rule.ids></links><search><creatorcontrib>Oshiro, Kai</creatorcontrib><creatorcontrib>Fujikawa, Masaki</creatorcontrib><creatorcontrib>Miyakubo, Hiroka</creatorcontrib><creatorcontrib>Makabe, Chobin</creatorcontrib><title>Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem</title><title>Materials science forum</title><description>A first-order hexahedral (H8)-element-based smoothed finite element method (S-FEM) with a volumetric-deviatoric split for nearly incompressible materials was developed for highly accurate deformation analysis of large-strain problems. In the proposed method, the isovolumetric part of the deformation gradient at the integration point is derived from F based on the beta finite element method (i.e., an S-FEM), whereas the volumetric part of the deformation gradient is derived from F on the basis of the standard FEM with reduced integration elements. This method targets H8 elements that are automatically generated from tetrahedral elements, which makes it quite practical. This is because the FE mesh can be created automatically even if the targeted object has a complex shape. This method eliminates the phenomena of volumetric and shear locking, and reduces pressure oscillations. The proposed method was implemented in the commercial FE software Abaqus and applied to the large-deformation contact problem to verify its effectiveness.</description><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Nonlinear programming</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF1LIzEUhoOsYFf9D4HFy5lmkkwmuRBxa7suKApVb0MmPdlGppNukm7Xf2-WLnjr1Xk5vB_wIHTRkJoTKqf7_b5O1sOYvfO2HiFP75eLWnFSS36EJo0QtFJdS7-gCaFtW7W8Eyfoa0qvhLBGNmKC4Bb-mjWsohmq7ybBCi83IeTywQs_-gx4PsCmTOB7yOuwws_Jj7_wSxh2G8jR2-oG_niTQ5F4uR18xi5EPAtjNjbjxxj6kj9Dx84MCc7_31P0vJg_zW6ru4cfP2fXd5VljPOK9i3lVjLrSGuVYpJSoVjvOkfBGmV6QRwzlHeKStEpB0IVg1GcW-askOwUfTv0bmP4vYOU9WvYxbFMatq0opEdZ01xXR5cNoaUIji9jX5j4ptuiP5HVhey-oOsLmR1IasLWS15yV8d8jmaMWWw64-ZzzW8AzKmiqo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Oshiro, Kai</creator><creator>Fujikawa, Masaki</creator><creator>Miyakubo, Hiroka</creator><creator>Makabe, Chobin</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem</title><author>Oshiro, Kai ; Fujikawa, Masaki ; Miyakubo, Hiroka ; Makabe, Chobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-2b524c83cf05c993822693bf7f2eca9ab60f3a247928679fe69269a944c3fc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Nonlinear programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oshiro, Kai</creatorcontrib><creatorcontrib>Fujikawa, Masaki</creatorcontrib><creatorcontrib>Miyakubo, Hiroka</creatorcontrib><creatorcontrib>Makabe, Chobin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oshiro, Kai</au><au>Fujikawa, Masaki</au><au>Miyakubo, Hiroka</au><au>Makabe, Chobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem</atitle><jtitle>Materials science forum</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>940</volume><spage>84</spage><epage>88</epage><pages>84-88</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>A first-order hexahedral (H8)-element-based smoothed finite element method (S-FEM) with a volumetric-deviatoric split for nearly incompressible materials was developed for highly accurate deformation analysis of large-strain problems. In the proposed method, the isovolumetric part of the deformation gradient at the integration point is derived from F based on the beta finite element method (i.e., an S-FEM), whereas the volumetric part of the deformation gradient is derived from F on the basis of the standard FEM with reduced integration elements. This method targets H8 elements that are automatically generated from tetrahedral elements, which makes it quite practical. This is because the FE mesh can be created automatically even if the targeted object has a complex shape. This method eliminates the phenomena of volumetric and shear locking, and reduces pressure oscillations. The proposed method was implemented in the commercial FE software Abaqus and applied to the large-deformation contact problem to verify its effectiveness.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.940.84</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2018-12, Vol.940, p.84-88
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2156187431
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Finite element analysis
Finite element method
Nonlinear programming
title Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hexahedral-Based%20Smoothed%20Finite%20Element%20Method%20Using%20Volumetric-Deviatoric%20Split%20for%20Contact%20Problem&rft.jtitle=Materials%20science%20forum&rft.au=Oshiro,%20Kai&rft.date=2018-12-01&rft.volume=940&rft.spage=84&rft.epage=88&rft.pages=84-88&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.940.84&rft_dat=%3Cproquest_cross%3E2156187431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156187431&rft_id=info:pmid/&rfr_iscdi=true