Intelligent system for cross-spectral and cross-distance face matching
Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data tha...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2018-10, Vol.71, p.915-924 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 924 |
---|---|
container_issue | |
container_start_page | 915 |
container_title | Computers & electrical engineering |
container_volume | 71 |
creator | Shamia, D. Chandy, D. Abraham |
description | Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques. |
doi_str_mv | 10.1016/j.compeleceng.2017.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155912603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790617308327</els_id><sourcerecordid>2155912603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvMOJ6xiTTyWUpxWqh4EbXIU1Oaoa5maRC397UduHSzTmcn3P7P4TuCa4IJuyxrczYT9CBgWFXUUx4hWWF8eICzYjgssS8aS7RLCtNySVm1-gmxhbnmhExQ6v1kKDr_A6GVMRDTNAXbgyFCWOMZZzApKC7Qg_2LFkfkx4MFE7n0OtkPv2wu0VXTncR7s55jj5Wz-_L13Lz9rJePm1KUy9kKo2zYuu0pHgBYkvr_IO0NQPcUC4YFWyrgXDKubS4bqTLrqgUzJqaC6GFrefo4bR3CuPXHmJS7bgPQz6pKGkaSSjDde6Sp67flwM4NQXf63BQBKsjNtWqP9jUEZvCUmUoeXZ5moVs49tDUNF4yIatDxmGsqP_x5YfLgZ8PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155912603</pqid></control><display><type>article</type><title>Intelligent system for cross-spectral and cross-distance face matching</title><source>Elsevier ScienceDirect Journals</source><creator>Shamia, D. ; Chandy, D. Abraham</creator><creatorcontrib>Shamia, D. ; Chandy, D. Abraham</creatorcontrib><description>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2017.09.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Cross-distance ; Cross-spectral ; Face ; Face recognition ; Feature extraction ; Feature recognition ; Histograms ; Intelligent systems ; Matching ; Near-infrared ; Night ; Recognition ; Wavelet analysis ; Wavelet transform</subject><ispartof>Computers & electrical engineering, 2018-10, Vol.71, p.915-924</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</citedby><cites>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790617308327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Shamia, D.</creatorcontrib><creatorcontrib>Chandy, D. Abraham</creatorcontrib><title>Intelligent system for cross-spectral and cross-distance face matching</title><title>Computers & electrical engineering</title><description>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</description><subject>Cross-distance</subject><subject>Cross-spectral</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Histograms</subject><subject>Intelligent systems</subject><subject>Matching</subject><subject>Near-infrared</subject><subject>Night</subject><subject>Recognition</subject><subject>Wavelet analysis</subject><subject>Wavelet transform</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvMOJ6xiTTyWUpxWqh4EbXIU1Oaoa5maRC397UduHSzTmcn3P7P4TuCa4IJuyxrczYT9CBgWFXUUx4hWWF8eICzYjgssS8aS7RLCtNySVm1-gmxhbnmhExQ6v1kKDr_A6GVMRDTNAXbgyFCWOMZZzApKC7Qg_2LFkfkx4MFE7n0OtkPv2wu0VXTncR7s55jj5Wz-_L13Lz9rJePm1KUy9kKo2zYuu0pHgBYkvr_IO0NQPcUC4YFWyrgXDKubS4bqTLrqgUzJqaC6GFrefo4bR3CuPXHmJS7bgPQz6pKGkaSSjDde6Sp67flwM4NQXf63BQBKsjNtWqP9jUEZvCUmUoeXZ5moVs49tDUNF4yIatDxmGsqP_x5YfLgZ8PA</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Shamia, D.</creator><creator>Chandy, D. Abraham</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201810</creationdate><title>Intelligent system for cross-spectral and cross-distance face matching</title><author>Shamia, D. ; Chandy, D. Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cross-distance</topic><topic>Cross-spectral</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Histograms</topic><topic>Intelligent systems</topic><topic>Matching</topic><topic>Near-infrared</topic><topic>Night</topic><topic>Recognition</topic><topic>Wavelet analysis</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamia, D.</creatorcontrib><creatorcontrib>Chandy, D. Abraham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamia, D.</au><au>Chandy, D. Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent system for cross-spectral and cross-distance face matching</atitle><jtitle>Computers & electrical engineering</jtitle><date>2018-10</date><risdate>2018</risdate><volume>71</volume><spage>915</spage><epage>924</epage><pages>915-924</pages><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2017.09.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2018-10, Vol.71, p.915-924 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2155912603 |
source | Elsevier ScienceDirect Journals |
subjects | Cross-distance Cross-spectral Face Face recognition Feature extraction Feature recognition Histograms Intelligent systems Matching Near-infrared Night Recognition Wavelet analysis Wavelet transform |
title | Intelligent system for cross-spectral and cross-distance face matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20system%20for%20cross-spectral%20and%20cross-distance%20face%20matching&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Shamia,%20D.&rft.date=2018-10&rft.volume=71&rft.spage=915&rft.epage=924&rft.pages=915-924&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2017.09.004&rft_dat=%3Cproquest_cross%3E2155912603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155912603&rft_id=info:pmid/&rft_els_id=S0045790617308327&rfr_iscdi=true |