Intelligent system for cross-spectral and cross-distance face matching

Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2018-10, Vol.71, p.915-924
Hauptverfasser: Shamia, D., Chandy, D. Abraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue
container_start_page 915
container_title Computers & electrical engineering
container_volume 71
creator Shamia, D.
Chandy, D. Abraham
description Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.
doi_str_mv 10.1016/j.compeleceng.2017.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155912603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790617308327</els_id><sourcerecordid>2155912603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvMOJ6xiTTyWUpxWqh4EbXIU1Oaoa5maRC397UduHSzTmcn3P7P4TuCa4IJuyxrczYT9CBgWFXUUx4hWWF8eICzYjgssS8aS7RLCtNySVm1-gmxhbnmhExQ6v1kKDr_A6GVMRDTNAXbgyFCWOMZZzApKC7Qg_2LFkfkx4MFE7n0OtkPv2wu0VXTncR7s55jj5Wz-_L13Lz9rJePm1KUy9kKo2zYuu0pHgBYkvr_IO0NQPcUC4YFWyrgXDKubS4bqTLrqgUzJqaC6GFrefo4bR3CuPXHmJS7bgPQz6pKGkaSSjDde6Sp67flwM4NQXf63BQBKsjNtWqP9jUEZvCUmUoeXZ5moVs49tDUNF4yIatDxmGsqP_x5YfLgZ8PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155912603</pqid></control><display><type>article</type><title>Intelligent system for cross-spectral and cross-distance face matching</title><source>Elsevier ScienceDirect Journals</source><creator>Shamia, D. ; Chandy, D. Abraham</creator><creatorcontrib>Shamia, D. ; Chandy, D. Abraham</creatorcontrib><description>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2017.09.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Cross-distance ; Cross-spectral ; Face ; Face recognition ; Feature extraction ; Feature recognition ; Histograms ; Intelligent systems ; Matching ; Near-infrared ; Night ; Recognition ; Wavelet analysis ; Wavelet transform</subject><ispartof>Computers &amp; electrical engineering, 2018-10, Vol.71, p.915-924</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</citedby><cites>FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790617308327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Shamia, D.</creatorcontrib><creatorcontrib>Chandy, D. Abraham</creatorcontrib><title>Intelligent system for cross-spectral and cross-distance face matching</title><title>Computers &amp; electrical engineering</title><description>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</description><subject>Cross-distance</subject><subject>Cross-spectral</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Histograms</subject><subject>Intelligent systems</subject><subject>Matching</subject><subject>Near-infrared</subject><subject>Night</subject><subject>Recognition</subject><subject>Wavelet analysis</subject><subject>Wavelet transform</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvMOJ6xiTTyWUpxWqh4EbXIU1Oaoa5maRC397UduHSzTmcn3P7P4TuCa4IJuyxrczYT9CBgWFXUUx4hWWF8eICzYjgssS8aS7RLCtNySVm1-gmxhbnmhExQ6v1kKDr_A6GVMRDTNAXbgyFCWOMZZzApKC7Qg_2LFkfkx4MFE7n0OtkPv2wu0VXTncR7s55jj5Wz-_L13Lz9rJePm1KUy9kKo2zYuu0pHgBYkvr_IO0NQPcUC4YFWyrgXDKubS4bqTLrqgUzJqaC6GFrefo4bR3CuPXHmJS7bgPQz6pKGkaSSjDde6Sp67flwM4NQXf63BQBKsjNtWqP9jUEZvCUmUoeXZ5moVs49tDUNF4yIatDxmGsqP_x5YfLgZ8PA</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Shamia, D.</creator><creator>Chandy, D. Abraham</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201810</creationdate><title>Intelligent system for cross-spectral and cross-distance face matching</title><author>Shamia, D. ; Chandy, D. Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cfd8bfa9204e8b234619d36e052786286bae172779d0359fece2986dc3788a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cross-distance</topic><topic>Cross-spectral</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Histograms</topic><topic>Intelligent systems</topic><topic>Matching</topic><topic>Near-infrared</topic><topic>Night</topic><topic>Recognition</topic><topic>Wavelet analysis</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamia, D.</creatorcontrib><creatorcontrib>Chandy, D. Abraham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamia, D.</au><au>Chandy, D. Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent system for cross-spectral and cross-distance face matching</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2018-10</date><risdate>2018</risdate><volume>71</volume><spage>915</spage><epage>924</epage><pages>915-924</pages><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Making face recognition system more and more intelligent is an active research area that has great challenges like identifying faces captured from long distances and at night time. This task involves cross-spectral and cross-distance comparison of facial probe images with the gallery facial data that are taken indoor and from shorter distances. In this paper, a new approach for night time and long distance face recognition has been proposed. The major stages of face recognition including pre-processing, feature extraction and matching has been investigated. The proposed approach is tested using the Long Distance Heterogeneous Face (LDHF) Database comprising visual (VIS) and Near Infra-Red (NIR) images taken at distances 1 m, 60 m, 100 m and 150 m. The combination of wavelet based Histogram of Oriented Gradients (HOG) feature extractor and Local Binary Pattern (LBP) features has yielded comparatively better results for long distances than the competing techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2017.09.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2018-10, Vol.71, p.915-924
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2155912603
source Elsevier ScienceDirect Journals
subjects Cross-distance
Cross-spectral
Face
Face recognition
Feature extraction
Feature recognition
Histograms
Intelligent systems
Matching
Near-infrared
Night
Recognition
Wavelet analysis
Wavelet transform
title Intelligent system for cross-spectral and cross-distance face matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20system%20for%20cross-spectral%20and%20cross-distance%20face%20matching&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Shamia,%20D.&rft.date=2018-10&rft.volume=71&rft.spage=915&rft.epage=924&rft.pages=915-924&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2017.09.004&rft_dat=%3Cproquest_cross%3E2155912603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155912603&rft_id=info:pmid/&rft_els_id=S0045790617308327&rfr_iscdi=true