Thermal reduction of graphene oxide: How temperature influences purity
Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the materi...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2018-12, Vol.33 (23), p.4113-4122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4122 |
---|---|
container_issue | 23 |
container_start_page | 4113 |
container_title | Journal of materials research |
container_volume | 33 |
creator | Sengupta, Iman Chakraborty, Samarshi Talukdar, Monikangkana Pal, Surjya K. Chakraborty, Sudipto |
description | Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature. |
doi_str_mv | 10.1557/jmr.2018.338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155820710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_338</cupid><sourcerecordid>2155820710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWKs7HyDg1hlvkpkk406KtULBTV2HNHOnndL5MZlBfXtTWnAlru7mfOfCIeSWQcryXD3sGp9yYDoVQp-RCYcsS3LB5TmZgNZZwguWXZKrEHYALAeVTch8tUXf2D31WI5uqLuWdhXdeNtvsUXafdUlPtJF90kHbHr0dhg90rqt9iO2DgPtR18P39fkorL7gDenOyXv8-fVbJEs315eZ0_LxAmlhkRlDJmzKLSV60IoEEJqYFyCdVKjLqVwoAvHZFEKW6qSr5V0SkGccBAopuTu6O199zFiGMyuG30bXxoeE2gOikGk7o-U810IHivT-7qx_tswMIdSJpYyh1Imlop4csRDxNoN-l_pH3x60ttm7etyg_8MfgDXuHms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155820710</pqid></control><display><type>article</type><title>Thermal reduction of graphene oxide: How temperature influences purity</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</creator><creatorcontrib>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</creatorcontrib><description>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.338</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Annealing ; Applied and Technical Physics ; Atmospheric pressure ; Biomaterials ; Carbon ; Chemical vapor deposition ; Crystal defects ; Defects ; Fourier transforms ; Graphene ; Graphite ; Infrared analysis ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Microwave heating ; Nanocomposites ; Nanotechnology ; Physical properties ; Potassium ; Reaction kinetics ; Researchers ; Sulfuric acid ; Temperature ; Thermal degradation ; Thermal reduction ; Thermogravimetric analysis ; Weight loss</subject><ispartof>Journal of materials research, 2018-12, Vol.33 (23), p.4113-4122</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</citedby><cites>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</cites><orcidid>0000-0002-6156-2985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.338$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291418003382/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Sengupta, Iman</creatorcontrib><creatorcontrib>Chakraborty, Samarshi</creatorcontrib><creatorcontrib>Talukdar, Monikangkana</creatorcontrib><creatorcontrib>Pal, Surjya K.</creatorcontrib><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><title>Thermal reduction of graphene oxide: How temperature influences purity</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</description><subject>Annealing</subject><subject>Applied and Technical Physics</subject><subject>Atmospheric pressure</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Infrared analysis</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microwave heating</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Physical properties</subject><subject>Potassium</subject><subject>Reaction kinetics</subject><subject>Researchers</subject><subject>Sulfuric acid</subject><subject>Temperature</subject><subject>Thermal degradation</subject><subject>Thermal reduction</subject><subject>Thermogravimetric analysis</subject><subject>Weight loss</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KAzEURoMoWKs7HyDg1hlvkpkk406KtULBTV2HNHOnndL5MZlBfXtTWnAlru7mfOfCIeSWQcryXD3sGp9yYDoVQp-RCYcsS3LB5TmZgNZZwguWXZKrEHYALAeVTch8tUXf2D31WI5uqLuWdhXdeNtvsUXafdUlPtJF90kHbHr0dhg90rqt9iO2DgPtR18P39fkorL7gDenOyXv8-fVbJEs315eZ0_LxAmlhkRlDJmzKLSV60IoEEJqYFyCdVKjLqVwoAvHZFEKW6qSr5V0SkGccBAopuTu6O199zFiGMyuG30bXxoeE2gOikGk7o-U810IHivT-7qx_tswMIdSJpYyh1Imlop4csRDxNoN-l_pH3x60ttm7etyg_8MfgDXuHms</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Sengupta, Iman</creator><creator>Chakraborty, Samarshi</creator><creator>Talukdar, Monikangkana</creator><creator>Pal, Surjya K.</creator><creator>Chakraborty, Sudipto</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6156-2985</orcidid></search><sort><creationdate>20181214</creationdate><title>Thermal reduction of graphene oxide: How temperature influences purity</title><author>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Applied and Technical Physics</topic><topic>Atmospheric pressure</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Infrared analysis</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microwave heating</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Physical properties</topic><topic>Potassium</topic><topic>Reaction kinetics</topic><topic>Researchers</topic><topic>Sulfuric acid</topic><topic>Temperature</topic><topic>Thermal degradation</topic><topic>Thermal reduction</topic><topic>Thermogravimetric analysis</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Iman</creatorcontrib><creatorcontrib>Chakraborty, Samarshi</creatorcontrib><creatorcontrib>Talukdar, Monikangkana</creatorcontrib><creatorcontrib>Pal, Surjya K.</creatorcontrib><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Iman</au><au>Chakraborty, Samarshi</au><au>Talukdar, Monikangkana</au><au>Pal, Surjya K.</au><au>Chakraborty, Sudipto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal reduction of graphene oxide: How temperature influences purity</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>33</volume><issue>23</issue><spage>4113</spage><epage>4122</epage><pages>4113-4122</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.338</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6156-2985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2018-12, Vol.33 (23), p.4113-4122 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2155820710 |
source | SpringerNature Journals; Cambridge University Press Journals Complete |
subjects | Annealing Applied and Technical Physics Atmospheric pressure Biomaterials Carbon Chemical vapor deposition Crystal defects Defects Fourier transforms Graphene Graphite Infrared analysis Inorganic Chemistry Materials Engineering Materials research Materials Science Microwave heating Nanocomposites Nanotechnology Physical properties Potassium Reaction kinetics Researchers Sulfuric acid Temperature Thermal degradation Thermal reduction Thermogravimetric analysis Weight loss |
title | Thermal reduction of graphene oxide: How temperature influences purity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20reduction%20of%20graphene%20oxide:%20How%20temperature%20influences%20purity&rft.jtitle=Journal%20of%20materials%20research&rft.au=Sengupta,%20Iman&rft.date=2018-12-14&rft.volume=33&rft.issue=23&rft.spage=4113&rft.epage=4122&rft.pages=4113-4122&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.338&rft_dat=%3Cproquest_cross%3E2155820710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155820710&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_338&rfr_iscdi=true |