Thermal reduction of graphene oxide: How temperature influences purity

Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2018-12, Vol.33 (23), p.4113-4122
Hauptverfasser: Sengupta, Iman, Chakraborty, Samarshi, Talukdar, Monikangkana, Pal, Surjya K., Chakraborty, Sudipto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4122
container_issue 23
container_start_page 4113
container_title Journal of materials research
container_volume 33
creator Sengupta, Iman
Chakraborty, Samarshi
Talukdar, Monikangkana
Pal, Surjya K.
Chakraborty, Sudipto
description Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.
doi_str_mv 10.1557/jmr.2018.338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155820710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_338</cupid><sourcerecordid>2155820710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWKs7HyDg1hlvkpkk406KtULBTV2HNHOnndL5MZlBfXtTWnAlru7mfOfCIeSWQcryXD3sGp9yYDoVQp-RCYcsS3LB5TmZgNZZwguWXZKrEHYALAeVTch8tUXf2D31WI5uqLuWdhXdeNtvsUXafdUlPtJF90kHbHr0dhg90rqt9iO2DgPtR18P39fkorL7gDenOyXv8-fVbJEs315eZ0_LxAmlhkRlDJmzKLSV60IoEEJqYFyCdVKjLqVwoAvHZFEKW6qSr5V0SkGccBAopuTu6O199zFiGMyuG30bXxoeE2gOikGk7o-U810IHivT-7qx_tswMIdSJpYyh1Imlop4csRDxNoN-l_pH3x60ttm7etyg_8MfgDXuHms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155820710</pqid></control><display><type>article</type><title>Thermal reduction of graphene oxide: How temperature influences purity</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</creator><creatorcontrib>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</creatorcontrib><description>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.338</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Annealing ; Applied and Technical Physics ; Atmospheric pressure ; Biomaterials ; Carbon ; Chemical vapor deposition ; Crystal defects ; Defects ; Fourier transforms ; Graphene ; Graphite ; Infrared analysis ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Microwave heating ; Nanocomposites ; Nanotechnology ; Physical properties ; Potassium ; Reaction kinetics ; Researchers ; Sulfuric acid ; Temperature ; Thermal degradation ; Thermal reduction ; Thermogravimetric analysis ; Weight loss</subject><ispartof>Journal of materials research, 2018-12, Vol.33 (23), p.4113-4122</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</citedby><cites>FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</cites><orcidid>0000-0002-6156-2985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.338$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291418003382/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Sengupta, Iman</creatorcontrib><creatorcontrib>Chakraborty, Samarshi</creatorcontrib><creatorcontrib>Talukdar, Monikangkana</creatorcontrib><creatorcontrib>Pal, Surjya K.</creatorcontrib><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><title>Thermal reduction of graphene oxide: How temperature influences purity</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</description><subject>Annealing</subject><subject>Applied and Technical Physics</subject><subject>Atmospheric pressure</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Infrared analysis</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microwave heating</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Physical properties</subject><subject>Potassium</subject><subject>Reaction kinetics</subject><subject>Researchers</subject><subject>Sulfuric acid</subject><subject>Temperature</subject><subject>Thermal degradation</subject><subject>Thermal reduction</subject><subject>Thermogravimetric analysis</subject><subject>Weight loss</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KAzEURoMoWKs7HyDg1hlvkpkk406KtULBTV2HNHOnndL5MZlBfXtTWnAlru7mfOfCIeSWQcryXD3sGp9yYDoVQp-RCYcsS3LB5TmZgNZZwguWXZKrEHYALAeVTch8tUXf2D31WI5uqLuWdhXdeNtvsUXafdUlPtJF90kHbHr0dhg90rqt9iO2DgPtR18P39fkorL7gDenOyXv8-fVbJEs315eZ0_LxAmlhkRlDJmzKLSV60IoEEJqYFyCdVKjLqVwoAvHZFEKW6qSr5V0SkGccBAopuTu6O199zFiGMyuG30bXxoeE2gOikGk7o-U810IHivT-7qx_tswMIdSJpYyh1Imlop4csRDxNoN-l_pH3x60ttm7etyg_8MfgDXuHms</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Sengupta, Iman</creator><creator>Chakraborty, Samarshi</creator><creator>Talukdar, Monikangkana</creator><creator>Pal, Surjya K.</creator><creator>Chakraborty, Sudipto</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6156-2985</orcidid></search><sort><creationdate>20181214</creationdate><title>Thermal reduction of graphene oxide: How temperature influences purity</title><author>Sengupta, Iman ; Chakraborty, Samarshi ; Talukdar, Monikangkana ; Pal, Surjya K. ; Chakraborty, Sudipto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-741e1cae38a6b9370336801260ac68e8d63c089c169d3ad7d2b76c770ae3203e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Applied and Technical Physics</topic><topic>Atmospheric pressure</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Infrared analysis</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microwave heating</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Physical properties</topic><topic>Potassium</topic><topic>Reaction kinetics</topic><topic>Researchers</topic><topic>Sulfuric acid</topic><topic>Temperature</topic><topic>Thermal degradation</topic><topic>Thermal reduction</topic><topic>Thermogravimetric analysis</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Iman</creatorcontrib><creatorcontrib>Chakraborty, Samarshi</creatorcontrib><creatorcontrib>Talukdar, Monikangkana</creatorcontrib><creatorcontrib>Pal, Surjya K.</creatorcontrib><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Iman</au><au>Chakraborty, Samarshi</au><au>Talukdar, Monikangkana</au><au>Pal, Surjya K.</au><au>Chakraborty, Sudipto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal reduction of graphene oxide: How temperature influences purity</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>33</volume><issue>23</issue><spage>4113</spage><epage>4122</epage><pages>4113-4122</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Among various methods used for the reduction of graphene oxide (GO) into a purer form of graphene, the thermal reduction method provides a simpler, safer, and economic alternative, compared to other techniques. Thermal reduction of GO causes significant weight loss and volume expansion of the material. Current work investigates the onset temperature where reduction in terms of exfoliation takes place, which is determined to be 325 °C at standard atmospheric pressure. Reduction temperature plays the most crucial role as it controls the quality of reduced graphene oxide in terms of weight percentage of carbon and lattice defect. The study leads to achieving highest content with a minimum defect in the graphene lattice at the optimum temperature, which is found to be 350 °C at standard atmospheric pressure. The thermal reduction process has been analyzed with the help of Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal degradation kinetics. From thermal degradation kinetics of GO, the rate of reaction has been found to be independent of concentration and is a sole function of temperature.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.338</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6156-2985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2018-12, Vol.33 (23), p.4113-4122
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2155820710
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects Annealing
Applied and Technical Physics
Atmospheric pressure
Biomaterials
Carbon
Chemical vapor deposition
Crystal defects
Defects
Fourier transforms
Graphene
Graphite
Infrared analysis
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Microwave heating
Nanocomposites
Nanotechnology
Physical properties
Potassium
Reaction kinetics
Researchers
Sulfuric acid
Temperature
Thermal degradation
Thermal reduction
Thermogravimetric analysis
Weight loss
title Thermal reduction of graphene oxide: How temperature influences purity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20reduction%20of%20graphene%20oxide:%20How%20temperature%20influences%20purity&rft.jtitle=Journal%20of%20materials%20research&rft.au=Sengupta,%20Iman&rft.date=2018-12-14&rft.volume=33&rft.issue=23&rft.spage=4113&rft.epage=4122&rft.pages=4113-4122&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.338&rft_dat=%3Cproquest_cross%3E2155820710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155820710&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_338&rfr_iscdi=true