Aerial navigation in obstructed environments with embedded nonlinear model predictive control

We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-12
Hauptverfasser: Small, Elias, Sopasakis, Pantelis, Fresk, Emil, Patrinos, Panagiotis, Nikolakopoulos, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Small, Elias
Sopasakis, Pantelis
Fresk, Emil
Patrinos, Panagiotis
Nikolakopoulos, George
description We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2155547577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155547577</sourcerecordid><originalsourceid>FETCH-proquest_journals_21555475773</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCIp6hwHXhTZtrFsRxQO4lRKbUUfSGU3Sen278ACu_uL9iZrrsiyybaX1TK1ifOZ5rje1Nqacq8sOA1kPbAe620TCQAxyjSn0bUIHyAMF4Q45RfhQegB2V3RuJBb2xGgDdOLQwyugozbRgNAKpyB-qaY36yOufl2o9fFw3p-yV5B3jzE1T-kDj9TowhhT1aauy_-uL771RSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155547577</pqid></control><display><type>article</type><title>Aerial navigation in obstructed environments with embedded nonlinear model predictive control</title><source>Free E- Journals</source><creator>Small, Elias ; Sopasakis, Pantelis ; Fresk, Emil ; Patrinos, Panagiotis ; Nikolakopoulos, George</creator><creatorcontrib>Small, Elias ; Sopasakis, Pantelis ; Fresk, Emil ; Patrinos, Panagiotis ; Nikolakopoulos, George</creatorcontrib><description>We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous navigation ; Autonomy ; Depletion ; Maneuvers ; Mathematical models ; Micro air vehicles (MAV) ; Nonlinear control ; Obstacle avoidance ; Predictive control</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Small, Elias</creatorcontrib><creatorcontrib>Sopasakis, Pantelis</creatorcontrib><creatorcontrib>Fresk, Emil</creatorcontrib><creatorcontrib>Patrinos, Panagiotis</creatorcontrib><creatorcontrib>Nikolakopoulos, George</creatorcontrib><title>Aerial navigation in obstructed environments with embedded nonlinear model predictive control</title><title>arXiv.org</title><description>We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.</description><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Depletion</subject><subject>Maneuvers</subject><subject>Mathematical models</subject><subject>Micro air vehicles (MAV)</subject><subject>Nonlinear control</subject><subject>Obstacle avoidance</subject><subject>Predictive control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCIp6hwHXhTZtrFsRxQO4lRKbUUfSGU3Sen278ACu_uL9iZrrsiyybaX1TK1ifOZ5rje1Nqacq8sOA1kPbAe620TCQAxyjSn0bUIHyAMF4Q45RfhQegB2V3RuJBb2xGgDdOLQwyugozbRgNAKpyB-qaY36yOufl2o9fFw3p-yV5B3jzE1T-kDj9TowhhT1aauy_-uL771RSs</recordid><startdate>20181212</startdate><enddate>20181212</enddate><creator>Small, Elias</creator><creator>Sopasakis, Pantelis</creator><creator>Fresk, Emil</creator><creator>Patrinos, Panagiotis</creator><creator>Nikolakopoulos, George</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181212</creationdate><title>Aerial navigation in obstructed environments with embedded nonlinear model predictive control</title><author>Small, Elias ; Sopasakis, Pantelis ; Fresk, Emil ; Patrinos, Panagiotis ; Nikolakopoulos, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21555475773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Depletion</topic><topic>Maneuvers</topic><topic>Mathematical models</topic><topic>Micro air vehicles (MAV)</topic><topic>Nonlinear control</topic><topic>Obstacle avoidance</topic><topic>Predictive control</topic><toplevel>online_resources</toplevel><creatorcontrib>Small, Elias</creatorcontrib><creatorcontrib>Sopasakis, Pantelis</creatorcontrib><creatorcontrib>Fresk, Emil</creatorcontrib><creatorcontrib>Patrinos, Panagiotis</creatorcontrib><creatorcontrib>Nikolakopoulos, George</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Small, Elias</au><au>Sopasakis, Pantelis</au><au>Fresk, Emil</au><au>Patrinos, Panagiotis</au><au>Nikolakopoulos, George</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Aerial navigation in obstructed environments with embedded nonlinear model predictive control</atitle><jtitle>arXiv.org</jtitle><date>2018-12-12</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2155547577
source Free E- Journals
subjects Autonomous navigation
Autonomy
Depletion
Maneuvers
Mathematical models
Micro air vehicles (MAV)
Nonlinear control
Obstacle avoidance
Predictive control
title Aerial navigation in obstructed environments with embedded nonlinear model predictive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Aerial%20navigation%20in%20obstructed%20environments%20with%20embedded%20nonlinear%20model%20predictive%20control&rft.jtitle=arXiv.org&rft.au=Small,%20Elias&rft.date=2018-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2155547577%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155547577&rft_id=info:pmid/&rfr_iscdi=true