Modeling Neutron Emissions in High Energy Atmospheric Phenomena

Neutron emissions with different durations have been observed during thunderstorms. These neutrons can be produced by microsecond to millisecond fast Terrestrial Gamma‐ray Flashes correlated with lightning, or by Gamma‐ray Glows lasting several seconds to minutes. In both cases, the neutrons are pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2018-11, Vol.123 (22), p.12,726-12,737
Hauptverfasser: Diniz, G., Rutjes, C., Ebert, U., Ferreira, I. S., São Sabbas, E. F. M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12,737
container_issue 22
container_start_page 12,726
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Diniz, G.
Rutjes, C.
Ebert, U.
Ferreira, I. S.
São Sabbas, E. F. M. T.
description Neutron emissions with different durations have been observed during thunderstorms. These neutrons can be produced by microsecond to millisecond fast Terrestrial Gamma‐ray Flashes correlated with lightning, or by Gamma‐ray Glows lasting several seconds to minutes. In both cases, the neutrons are produced through a photonuclear reaction of gamma rays in the energy range of 10 to 30 MeV with nuclei of air molecules. Here we present simulations of gamma‐ray beams propagating downward from different source altitudes. In our analysis the primary photons with energies between 10 and 30 MeV are separated into four energy intervals, each of 5 MeV width. From these data, arbitrary spectra of primary photons and of their products can be composed. Our results indicate that the neutrons are created essentially along the trajectory of the primary photons and that they reach ground within a transversal area of radius below 500 m. This lateral spreading is dominated by neutron diffusion due to collisions with air molecules. A secondary longer lasting photon pulse at sea level is predicted as well by our simulations. We have introduced this Terrestrial Gamma‐ray Flash afterglow already in (Rutjes et al. 2017, https://doi.org/10.1002/2017GL075552). It is due to neutron capture by air molecules, and it has recently been observed by Bowers et al. (2017, https://doi.org/10.1002/2017GL075071) and Enoto et al. (2017, https://doi.org/10.1038/nature24630). Key Points We calculate neutron densities on ground for arbitrary spectra, altitudes, and durations of gamma‐ray sources Neutron detection on ground indicates high gamma‐ray energies at source altitude When the gamma‐ray source is a directed beam, the effective neutron source is a cone of km length
doi_str_mv 10.1029/2018JD028962
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2155104021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155104021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-348d70beaf6f23c0004eba0ea8ddc7ef5856b4896f7cb3b6c2c0d7cdfeed9d9b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKo3P8CCV1dfspvd5CSlra2l_kEUvC27yUub0k1q0iL99q5UxJPvMu_wY2YYQi4oXFNg8oYBFbMRMCELdkR6jBYyFVIWx79_-X5KzmNcQXcCspznPXL74DWurVskj7jbBu-ScWtjtN7FxLpkahfLZOwwLPbJYNv6uFlisCp5XqLzLbr6jJyYeh3x_Ef75O1u_DqcpvOnyf1wME9VTimkWS50CQ3WpjAsU12BHJsasBZaqxINF7xo8q66KVWTNYViCnSptEHUUssm65PLg-8m-I8dxm218rvgusiKUc4p5MBoR10dKBV8jAFNtQm2rcO-olB9r1T9XanDswP-ade4_5etZpOXEedQQvYFwMNouA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155104021</pqid></control><display><type>article</type><title>Modeling Neutron Emissions in High Energy Atmospheric Phenomena</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Diniz, G. ; Rutjes, C. ; Ebert, U. ; Ferreira, I. S. ; São Sabbas, E. F. M. T.</creator><creatorcontrib>Diniz, G. ; Rutjes, C. ; Ebert, U. ; Ferreira, I. S. ; São Sabbas, E. F. M. T.</creatorcontrib><description>Neutron emissions with different durations have been observed during thunderstorms. These neutrons can be produced by microsecond to millisecond fast Terrestrial Gamma‐ray Flashes correlated with lightning, or by Gamma‐ray Glows lasting several seconds to minutes. In both cases, the neutrons are produced through a photonuclear reaction of gamma rays in the energy range of 10 to 30 MeV with nuclei of air molecules. Here we present simulations of gamma‐ray beams propagating downward from different source altitudes. In our analysis the primary photons with energies between 10 and 30 MeV are separated into four energy intervals, each of 5 MeV width. From these data, arbitrary spectra of primary photons and of their products can be composed. Our results indicate that the neutrons are created essentially along the trajectory of the primary photons and that they reach ground within a transversal area of radius below 500 m. This lateral spreading is dominated by neutron diffusion due to collisions with air molecules. A secondary longer lasting photon pulse at sea level is predicted as well by our simulations. We have introduced this Terrestrial Gamma‐ray Flash afterglow already in (Rutjes et al. 2017, https://doi.org/10.1002/2017GL075552). It is due to neutron capture by air molecules, and it has recently been observed by Bowers et al. (2017, https://doi.org/10.1002/2017GL075071) and Enoto et al. (2017, https://doi.org/10.1038/nature24630). Key Points We calculate neutron densities on ground for arbitrary spectra, altitudes, and durations of gamma‐ray sources Neutron detection on ground indicates high gamma‐ray energies at source altitude When the gamma‐ray source is a directed beam, the effective neutron source is a cone of km length</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD028962</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air ; Atmospheric models ; Beams (radiation) ; Computer simulation ; Dye dispersion ; Emissions ; Energy ; Gamma radiation ; Gamma ray flashes ; Gamma rays ; Geophysics ; Lightning ; Modelling ; Neutrons ; Nuclear capture ; Nuclei (nuclear physics) ; Photons ; Sea level ; Thunderstorms</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-11, Vol.123 (22), p.12,726-12,737</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-348d70beaf6f23c0004eba0ea8ddc7ef5856b4896f7cb3b6c2c0d7cdfeed9d9b3</citedby><cites>FETCH-LOGICAL-c4110-348d70beaf6f23c0004eba0ea8ddc7ef5856b4896f7cb3b6c2c0d7cdfeed9d9b3</cites><orcidid>0000-0003-4475-2741 ; 0000-0002-4381-7446 ; 0000-0001-8349-092X ; 0000-0003-3891-6869 ; 0000-0003-3646-7756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD028962$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD028962$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids></links><search><creatorcontrib>Diniz, G.</creatorcontrib><creatorcontrib>Rutjes, C.</creatorcontrib><creatorcontrib>Ebert, U.</creatorcontrib><creatorcontrib>Ferreira, I. S.</creatorcontrib><creatorcontrib>São Sabbas, E. F. M. T.</creatorcontrib><title>Modeling Neutron Emissions in High Energy Atmospheric Phenomena</title><title>Journal of geophysical research. Atmospheres</title><description>Neutron emissions with different durations have been observed during thunderstorms. These neutrons can be produced by microsecond to millisecond fast Terrestrial Gamma‐ray Flashes correlated with lightning, or by Gamma‐ray Glows lasting several seconds to minutes. In both cases, the neutrons are produced through a photonuclear reaction of gamma rays in the energy range of 10 to 30 MeV with nuclei of air molecules. Here we present simulations of gamma‐ray beams propagating downward from different source altitudes. In our analysis the primary photons with energies between 10 and 30 MeV are separated into four energy intervals, each of 5 MeV width. From these data, arbitrary spectra of primary photons and of their products can be composed. Our results indicate that the neutrons are created essentially along the trajectory of the primary photons and that they reach ground within a transversal area of radius below 500 m. This lateral spreading is dominated by neutron diffusion due to collisions with air molecules. A secondary longer lasting photon pulse at sea level is predicted as well by our simulations. We have introduced this Terrestrial Gamma‐ray Flash afterglow already in (Rutjes et al. 2017, https://doi.org/10.1002/2017GL075552). It is due to neutron capture by air molecules, and it has recently been observed by Bowers et al. (2017, https://doi.org/10.1002/2017GL075071) and Enoto et al. (2017, https://doi.org/10.1038/nature24630). Key Points We calculate neutron densities on ground for arbitrary spectra, altitudes, and durations of gamma‐ray sources Neutron detection on ground indicates high gamma‐ray energies at source altitude When the gamma‐ray source is a directed beam, the effective neutron source is a cone of km length</description><subject>Air</subject><subject>Atmospheric models</subject><subject>Beams (radiation)</subject><subject>Computer simulation</subject><subject>Dye dispersion</subject><subject>Emissions</subject><subject>Energy</subject><subject>Gamma radiation</subject><subject>Gamma ray flashes</subject><subject>Gamma rays</subject><subject>Geophysics</subject><subject>Lightning</subject><subject>Modelling</subject><subject>Neutrons</subject><subject>Nuclear capture</subject><subject>Nuclei (nuclear physics)</subject><subject>Photons</subject><subject>Sea level</subject><subject>Thunderstorms</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKo3P8CCV1dfspvd5CSlra2l_kEUvC27yUub0k1q0iL99q5UxJPvMu_wY2YYQi4oXFNg8oYBFbMRMCELdkR6jBYyFVIWx79_-X5KzmNcQXcCspznPXL74DWurVskj7jbBu-ScWtjtN7FxLpkahfLZOwwLPbJYNv6uFlisCp5XqLzLbr6jJyYeh3x_Ef75O1u_DqcpvOnyf1wME9VTimkWS50CQ3WpjAsU12BHJsasBZaqxINF7xo8q66KVWTNYViCnSptEHUUssm65PLg-8m-I8dxm218rvgusiKUc4p5MBoR10dKBV8jAFNtQm2rcO-olB9r1T9XanDswP-ade4_5etZpOXEedQQvYFwMNouA</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Diniz, G.</creator><creator>Rutjes, C.</creator><creator>Ebert, U.</creator><creator>Ferreira, I. S.</creator><creator>São Sabbas, E. F. M. T.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4475-2741</orcidid><orcidid>https://orcid.org/0000-0002-4381-7446</orcidid><orcidid>https://orcid.org/0000-0001-8349-092X</orcidid><orcidid>https://orcid.org/0000-0003-3891-6869</orcidid><orcidid>https://orcid.org/0000-0003-3646-7756</orcidid></search><sort><creationdate>20181127</creationdate><title>Modeling Neutron Emissions in High Energy Atmospheric Phenomena</title><author>Diniz, G. ; Rutjes, C. ; Ebert, U. ; Ferreira, I. S. ; São Sabbas, E. F. M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-348d70beaf6f23c0004eba0ea8ddc7ef5856b4896f7cb3b6c2c0d7cdfeed9d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air</topic><topic>Atmospheric models</topic><topic>Beams (radiation)</topic><topic>Computer simulation</topic><topic>Dye dispersion</topic><topic>Emissions</topic><topic>Energy</topic><topic>Gamma radiation</topic><topic>Gamma ray flashes</topic><topic>Gamma rays</topic><topic>Geophysics</topic><topic>Lightning</topic><topic>Modelling</topic><topic>Neutrons</topic><topic>Nuclear capture</topic><topic>Nuclei (nuclear physics)</topic><topic>Photons</topic><topic>Sea level</topic><topic>Thunderstorms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diniz, G.</creatorcontrib><creatorcontrib>Rutjes, C.</creatorcontrib><creatorcontrib>Ebert, U.</creatorcontrib><creatorcontrib>Ferreira, I. S.</creatorcontrib><creatorcontrib>São Sabbas, E. F. M. T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diniz, G.</au><au>Rutjes, C.</au><au>Ebert, U.</au><au>Ferreira, I. S.</au><au>São Sabbas, E. F. M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Neutron Emissions in High Energy Atmospheric Phenomena</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-11-27</date><risdate>2018</risdate><volume>123</volume><issue>22</issue><spage>12,726</spage><epage>12,737</epage><pages>12,726-12,737</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Neutron emissions with different durations have been observed during thunderstorms. These neutrons can be produced by microsecond to millisecond fast Terrestrial Gamma‐ray Flashes correlated with lightning, or by Gamma‐ray Glows lasting several seconds to minutes. In both cases, the neutrons are produced through a photonuclear reaction of gamma rays in the energy range of 10 to 30 MeV with nuclei of air molecules. Here we present simulations of gamma‐ray beams propagating downward from different source altitudes. In our analysis the primary photons with energies between 10 and 30 MeV are separated into four energy intervals, each of 5 MeV width. From these data, arbitrary spectra of primary photons and of their products can be composed. Our results indicate that the neutrons are created essentially along the trajectory of the primary photons and that they reach ground within a transversal area of radius below 500 m. This lateral spreading is dominated by neutron diffusion due to collisions with air molecules. A secondary longer lasting photon pulse at sea level is predicted as well by our simulations. We have introduced this Terrestrial Gamma‐ray Flash afterglow already in (Rutjes et al. 2017, https://doi.org/10.1002/2017GL075552). It is due to neutron capture by air molecules, and it has recently been observed by Bowers et al. (2017, https://doi.org/10.1002/2017GL075071) and Enoto et al. (2017, https://doi.org/10.1038/nature24630). Key Points We calculate neutron densities on ground for arbitrary spectra, altitudes, and durations of gamma‐ray sources Neutron detection on ground indicates high gamma‐ray energies at source altitude When the gamma‐ray source is a directed beam, the effective neutron source is a cone of km length</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD028962</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4475-2741</orcidid><orcidid>https://orcid.org/0000-0002-4381-7446</orcidid><orcidid>https://orcid.org/0000-0001-8349-092X</orcidid><orcidid>https://orcid.org/0000-0003-3891-6869</orcidid><orcidid>https://orcid.org/0000-0003-3646-7756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-11, Vol.123 (22), p.12,726-12,737
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2155104021
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Alma/SFX Local Collection
subjects Air
Atmospheric models
Beams (radiation)
Computer simulation
Dye dispersion
Emissions
Energy
Gamma radiation
Gamma ray flashes
Gamma rays
Geophysics
Lightning
Modelling
Neutrons
Nuclear capture
Nuclei (nuclear physics)
Photons
Sea level
Thunderstorms
title Modeling Neutron Emissions in High Energy Atmospheric Phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Neutron%20Emissions%20in%20High%20Energy%20Atmospheric%20Phenomena&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Diniz,%20G.&rft.date=2018-11-27&rft.volume=123&rft.issue=22&rft.spage=12,726&rft.epage=12,737&rft.pages=12,726-12,737&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD028962&rft_dat=%3Cproquest_cross%3E2155104021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155104021&rft_id=info:pmid/&rfr_iscdi=true