Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers

Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-12, Vol.1 (48), p.2327-2336
Hauptverfasser: Athanasopoulou, Evangelia-Nefeli, Nianias, Nikolaos, Ong, Quy Khac, Stellacci, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2336
container_issue 48
container_start_page 2327
container_title Nanoscale
container_volume 1
creator Athanasopoulou, Evangelia-Nefeli
Nianias, Nikolaos
Ong, Quy Khac
Stellacci, Francesco
description Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity ( E *) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel. In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.
doi_str_mv 10.1039/c8nr07657j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2155083072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155083072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</originalsourceid><addsrcrecordid>eNpdkUtL5EAUhQtx8NHjxr0ScCNCZm7qlaqlNj5maBRE16FSdYNpklRblV70_Hqr7baFWd3Xx-FwLiGnBfwqgOnfVg0BSinK-R45osAhZ6yk-7te8kNyHOMcQGom2QE5ZCCg1Iodkeqm7b0zXWZG37c2a3ywmKUu-Gj9YrVeZOMbZvbNBGNHDO0_M7Z-yHyT9q3vzIgui9g1uYkR-7pLY--HdFhhiD_Jj8Z0EU-2dUJe725fpg_57On-z_R6ltvkdcyVLHjJBGgBVkpRS1TUceGKmjOsy4I6obXgzjjRSNSlo0qhppZCA1AzzibkcqO7CP59iXGs-jZa7DozoF_GihZcK6Ep1wm9-A-d-2UYkrtECQGKQUkTdbWh1knEgE21CG1vwqoqoFrHXk3V4_Nn7H8TfL6VXNY9uh36lXMCzjZAiHZ3_f4b-wAZfoby</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155083072</pqid></control><display><type>article</type><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><source>Royal Society Of Chemistry Journals</source><creator>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</creator><creatorcontrib>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</creatorcontrib><description>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity ( E *) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel. In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr07657j</identifier><identifier>PMID: 30507983</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Coatings ; Domains ; Elasticity ; Ligands ; Manufacturability ; Microscopy ; Monolayers ; Organic chemistry ; Phase separation ; Self-assembled monolayers ; Self-assembly</subject><ispartof>Nanoscale, 2018-12, Vol.1 (48), p.2327-2336</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</citedby><cites>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</cites><orcidid>0000-0003-4635-6080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30507983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanasopoulou, Evangelia-Nefeli</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Ong, Quy Khac</creatorcontrib><creatorcontrib>Stellacci, Francesco</creatorcontrib><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity ( E *) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel. In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</description><subject>Atomic force microscopy</subject><subject>Coatings</subject><subject>Domains</subject><subject>Elasticity</subject><subject>Ligands</subject><subject>Manufacturability</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>Organic chemistry</subject><subject>Phase separation</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtL5EAUhQtx8NHjxr0ScCNCZm7qlaqlNj5maBRE16FSdYNpklRblV70_Hqr7baFWd3Xx-FwLiGnBfwqgOnfVg0BSinK-R45osAhZ6yk-7te8kNyHOMcQGom2QE5ZCCg1Iodkeqm7b0zXWZG37c2a3ywmKUu-Gj9YrVeZOMbZvbNBGNHDO0_M7Z-yHyT9q3vzIgui9g1uYkR-7pLY--HdFhhiD_Jj8Z0EU-2dUJe725fpg_57On-z_R6ltvkdcyVLHjJBGgBVkpRS1TUceGKmjOsy4I6obXgzjjRSNSlo0qhppZCA1AzzibkcqO7CP59iXGs-jZa7DozoF_GihZcK6Ep1wm9-A-d-2UYkrtECQGKQUkTdbWh1knEgE21CG1vwqoqoFrHXk3V4_Nn7H8TfL6VXNY9uh36lXMCzjZAiHZ3_f4b-wAZfoby</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Athanasopoulou, Evangelia-Nefeli</creator><creator>Nianias, Nikolaos</creator><creator>Ong, Quy Khac</creator><creator>Stellacci, Francesco</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4635-6080</orcidid></search><sort><creationdate>20181213</creationdate><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><author>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Coatings</topic><topic>Domains</topic><topic>Elasticity</topic><topic>Ligands</topic><topic>Manufacturability</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>Organic chemistry</topic><topic>Phase separation</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulou, Evangelia-Nefeli</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Ong, Quy Khac</creatorcontrib><creatorcontrib>Stellacci, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasopoulou, Evangelia-Nefeli</au><au>Nianias, Nikolaos</au><au>Ong, Quy Khac</au><au>Stellacci, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>1</volume><issue>48</issue><spage>2327</spage><epage>2336</epage><pages>2327-2336</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity ( E *) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel. In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30507983</pmid><doi>10.1039/c8nr07657j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4635-6080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-12, Vol.1 (48), p.2327-2336
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2155083072
source Royal Society Of Chemistry Journals
subjects Atomic force microscopy
Coatings
Domains
Elasticity
Ligands
Manufacturability
Microscopy
Monolayers
Organic chemistry
Phase separation
Self-assembled monolayers
Self-assembly
title Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimodal%20atomic%20force%20microscopy%20for%20the%20characterization%20of%20thiolated%20self-assembled%20monolayers&rft.jtitle=Nanoscale&rft.au=Athanasopoulou,%20Evangelia-Nefeli&rft.date=2018-12-13&rft.volume=1&rft.issue=48&rft.spage=2327&rft.epage=2336&rft.pages=2327-2336&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr07657j&rft_dat=%3Cproquest_pubme%3E2155083072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155083072&rft_id=info:pmid/30507983&rfr_iscdi=true