Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers
Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-p...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-12, Vol.1 (48), p.2327-2336 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2336 |
---|---|
container_issue | 48 |
container_start_page | 2327 |
container_title | Nanoscale |
container_volume | 1 |
creator | Athanasopoulou, Evangelia-Nefeli Nianias, Nikolaos Ong, Quy Khac Stellacci, Francesco |
description | Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity (
E
*) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel.
In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy. |
doi_str_mv | 10.1039/c8nr07657j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2155083072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155083072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</originalsourceid><addsrcrecordid>eNpdkUtL5EAUhQtx8NHjxr0ScCNCZm7qlaqlNj5maBRE16FSdYNpklRblV70_Hqr7baFWd3Xx-FwLiGnBfwqgOnfVg0BSinK-R45osAhZ6yk-7te8kNyHOMcQGom2QE5ZCCg1Iodkeqm7b0zXWZG37c2a3ywmKUu-Gj9YrVeZOMbZvbNBGNHDO0_M7Z-yHyT9q3vzIgui9g1uYkR-7pLY--HdFhhiD_Jj8Z0EU-2dUJe725fpg_57On-z_R6ltvkdcyVLHjJBGgBVkpRS1TUceGKmjOsy4I6obXgzjjRSNSlo0qhppZCA1AzzibkcqO7CP59iXGs-jZa7DozoF_GihZcK6Ep1wm9-A-d-2UYkrtECQGKQUkTdbWh1knEgE21CG1vwqoqoFrHXk3V4_Nn7H8TfL6VXNY9uh36lXMCzjZAiHZ3_f4b-wAZfoby</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155083072</pqid></control><display><type>article</type><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><source>Royal Society Of Chemistry Journals</source><creator>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</creator><creatorcontrib>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</creatorcontrib><description>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity (
E
*) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel.
In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr07657j</identifier><identifier>PMID: 30507983</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Coatings ; Domains ; Elasticity ; Ligands ; Manufacturability ; Microscopy ; Monolayers ; Organic chemistry ; Phase separation ; Self-assembled monolayers ; Self-assembly</subject><ispartof>Nanoscale, 2018-12, Vol.1 (48), p.2327-2336</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</citedby><cites>FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</cites><orcidid>0000-0003-4635-6080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30507983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanasopoulou, Evangelia-Nefeli</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Ong, Quy Khac</creatorcontrib><creatorcontrib>Stellacci, Francesco</creatorcontrib><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity (
E
*) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel.
In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</description><subject>Atomic force microscopy</subject><subject>Coatings</subject><subject>Domains</subject><subject>Elasticity</subject><subject>Ligands</subject><subject>Manufacturability</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>Organic chemistry</subject><subject>Phase separation</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtL5EAUhQtx8NHjxr0ScCNCZm7qlaqlNj5maBRE16FSdYNpklRblV70_Hqr7baFWd3Xx-FwLiGnBfwqgOnfVg0BSinK-R45osAhZ6yk-7te8kNyHOMcQGom2QE5ZCCg1Iodkeqm7b0zXWZG37c2a3ywmKUu-Gj9YrVeZOMbZvbNBGNHDO0_M7Z-yHyT9q3vzIgui9g1uYkR-7pLY--HdFhhiD_Jj8Z0EU-2dUJe725fpg_57On-z_R6ltvkdcyVLHjJBGgBVkpRS1TUceGKmjOsy4I6obXgzjjRSNSlo0qhppZCA1AzzibkcqO7CP59iXGs-jZa7DozoF_GihZcK6Ep1wm9-A-d-2UYkrtECQGKQUkTdbWh1knEgE21CG1vwqoqoFrHXk3V4_Nn7H8TfL6VXNY9uh36lXMCzjZAiHZ3_f4b-wAZfoby</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Athanasopoulou, Evangelia-Nefeli</creator><creator>Nianias, Nikolaos</creator><creator>Ong, Quy Khac</creator><creator>Stellacci, Francesco</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4635-6080</orcidid></search><sort><creationdate>20181213</creationdate><title>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</title><author>Athanasopoulou, Evangelia-Nefeli ; Nianias, Nikolaos ; Ong, Quy Khac ; Stellacci, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-86147350950c665b6e82d45d1b43eb712d59954dad5f6e97d288e92c20f00b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Coatings</topic><topic>Domains</topic><topic>Elasticity</topic><topic>Ligands</topic><topic>Manufacturability</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>Organic chemistry</topic><topic>Phase separation</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulou, Evangelia-Nefeli</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Ong, Quy Khac</creatorcontrib><creatorcontrib>Stellacci, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasopoulou, Evangelia-Nefeli</au><au>Nianias, Nikolaos</au><au>Ong, Quy Khac</au><au>Stellacci, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>1</volume><issue>48</issue><spage>2327</spage><epage>2336</epage><pages>2327-2336</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity (
E
*) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel.
In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30507983</pmid><doi>10.1039/c8nr07657j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4635-6080</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-12, Vol.1 (48), p.2327-2336 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2155083072 |
source | Royal Society Of Chemistry Journals |
subjects | Atomic force microscopy Coatings Domains Elasticity Ligands Manufacturability Microscopy Monolayers Organic chemistry Phase separation Self-assembled monolayers Self-assembly |
title | Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimodal%20atomic%20force%20microscopy%20for%20the%20characterization%20of%20thiolated%20self-assembled%20monolayers&rft.jtitle=Nanoscale&rft.au=Athanasopoulou,%20Evangelia-Nefeli&rft.date=2018-12-13&rft.volume=1&rft.issue=48&rft.spage=2327&rft.epage=2336&rft.pages=2327-2336&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr07657j&rft_dat=%3Cproquest_pubme%3E2155083072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155083072&rft_id=info:pmid/30507983&rfr_iscdi=true |