Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at t...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2018-07, Vol.70 (7), p.1112-1117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1117 |
---|---|
container_issue | 7 |
container_start_page | 1112 |
container_title | JOM (1989) |
container_volume | 70 |
creator | Huo, Yuanming He, Tao Chen, Shoushuang Wu, Riming |
description | High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650–850°C and at strain rates of 0.1–10.0 s
−1
. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650–750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization. |
doi_str_mv | 10.1007/s11837-018-2914-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154973984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154973984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-91f3492cc9ccc7856e9916e9ab84854fb17db9789454a56d62d241064a8423633</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMkrbJUdf1A1w8qHgM2TR1u3SbmrQL_ntTK3jyMjMM7zsfD0LnQC-B0uIqAkheEAqSMAWC0AM0g0xwAjKDw1RTURAhuTxGJzFuafIIBTOkV85uTFtb0-AbtzH72gds2hKvaht87MNg-yE4vNz7Zuhr32JfJaEJdfuBX3rnGpyxdAG-HX5a7ybs8MLvuuBiTPJTdFSZJrqz3zxHb3fL18UDeXq-f1xcPxHLJeuJgooLxaxV1tpCZrlTClIwaylkJqo1FOVaFVKJTJgsL3NWMgE0F0YKxnPO5-himtsF_zm42OutH0KbVmqWOKiCKymSCibV-FsMrtJdqHcmfGmgeuSoJ446cdQjR02Th02e2I0fuvA3-X_TNzM9c-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154973984</pqid></control><display><type>article</type><title>Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression</title><source>SpringerNature Journals</source><creator>Huo, Yuanming ; He, Tao ; Chen, Shoushuang ; Wu, Riming</creator><creatorcontrib>Huo, Yuanming ; He, Tao ; Chen, Shoushuang ; Wu, Riming</creatorcontrib><description>High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650–850°C and at strain rates of 0.1–10.0 s
−1
. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650–750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-2914-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Application of Advanced Characterization Techniques for Engineering Materials ; Bearing steels ; Carbides ; Carbon ; Chemistry/Food Science ; Compression tests ; Deformation ; Deformation effects ; Deformation mechanisms ; Earth Sciences ; Energy consumption ; Engineering ; Environment ; Evolution ; Homogeneous structure ; Mechanical properties ; Microstructure ; Physics ; Softening ; Spheroidizing ; Temperature ; Yield stress</subject><ispartof>JOM (1989), 2018-07, Vol.70 (7), p.1112-1117</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Copyright Springer Science & Business Media Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-91f3492cc9ccc7856e9916e9ab84854fb17db9789454a56d62d241064a8423633</citedby><cites>FETCH-LOGICAL-c382t-91f3492cc9ccc7856e9916e9ab84854fb17db9789454a56d62d241064a8423633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-2914-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-2914-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huo, Yuanming</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Chen, Shoushuang</creatorcontrib><creatorcontrib>Wu, Riming</creatorcontrib><title>Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650–850°C and at strain rates of 0.1–10.0 s
−1
. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650–750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.</description><subject>Application of Advanced Characterization Techniques for Engineering Materials</subject><subject>Bearing steels</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Chemistry/Food Science</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Earth Sciences</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Environment</subject><subject>Evolution</subject><subject>Homogeneous structure</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Softening</subject><subject>Spheroidizing</subject><subject>Temperature</subject><subject>Yield stress</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMkrbJUdf1A1w8qHgM2TR1u3SbmrQL_ntTK3jyMjMM7zsfD0LnQC-B0uIqAkheEAqSMAWC0AM0g0xwAjKDw1RTURAhuTxGJzFuafIIBTOkV85uTFtb0-AbtzH72gds2hKvaht87MNg-yE4vNz7Zuhr32JfJaEJdfuBX3rnGpyxdAG-HX5a7ybs8MLvuuBiTPJTdFSZJrqz3zxHb3fL18UDeXq-f1xcPxHLJeuJgooLxaxV1tpCZrlTClIwaylkJqo1FOVaFVKJTJgsL3NWMgE0F0YKxnPO5-himtsF_zm42OutH0KbVmqWOKiCKymSCibV-FsMrtJdqHcmfGmgeuSoJ446cdQjR02Th02e2I0fuvA3-X_TNzM9c-o</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Huo, Yuanming</creator><creator>He, Tao</creator><creator>Chen, Shoushuang</creator><creator>Wu, Riming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180701</creationdate><title>Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression</title><author>Huo, Yuanming ; He, Tao ; Chen, Shoushuang ; Wu, Riming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-91f3492cc9ccc7856e9916e9ab84854fb17db9789454a56d62d241064a8423633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Application of Advanced Characterization Techniques for Engineering Materials</topic><topic>Bearing steels</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Chemistry/Food Science</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Earth Sciences</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Environment</topic><topic>Evolution</topic><topic>Homogeneous structure</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Softening</topic><topic>Spheroidizing</topic><topic>Temperature</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Yuanming</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Chen, Shoushuang</creatorcontrib><creatorcontrib>Wu, Riming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Yuanming</au><au>He, Tao</au><au>Chen, Shoushuang</au><au>Wu, Riming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>70</volume><issue>7</issue><spage>1112</spage><epage>1117</epage><pages>1112-1117</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650–850°C and at strain rates of 0.1–10.0 s
−1
. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650–750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-2914-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2018-07, Vol.70 (7), p.1112-1117 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2154973984 |
source | SpringerNature Journals |
subjects | Application of Advanced Characterization Techniques for Engineering Materials Bearing steels Carbides Carbon Chemistry/Food Science Compression tests Deformation Deformation effects Deformation mechanisms Earth Sciences Energy consumption Engineering Environment Evolution Homogeneous structure Mechanical properties Microstructure Physics Softening Spheroidizing Temperature Yield stress |
title | Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Behavior%20and%20Microstructure%20Evolution%20of%20Bearing%20Steel%2052100%20During%20Warm%20Compression&rft.jtitle=JOM%20(1989)&rft.au=Huo,%20Yuanming&rft.date=2018-07-01&rft.volume=70&rft.issue=7&rft.spage=1112&rft.epage=1117&rft.pages=1112-1117&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-2914-0&rft_dat=%3Cproquest_cross%3E2154973984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154973984&rft_id=info:pmid/&rfr_iscdi=true |