Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials
Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2018-08, Vol.70 (8), p.1404-1410 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1410 |
---|---|
container_issue | 8 |
container_start_page | 1404 |
container_title | JOM (1989) |
container_volume | 70 |
creator | Hajalilou, Abdollah Abouzari-Lotf, Ebrahim Etemadifar, Reza Abbasi-Chianeh, Vahid Kianvash, Abbas |
description | Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was ~ 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~ 11.26 emu/g) compared with Fe3O4 powder (~ 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of ~ - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications. |
doi_str_mv | 10.1007/s11837-018-2930-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2154973029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154973029</sourcerecordid><originalsourceid>FETCH-proquest_journals_21549730293</originalsourceid><addsrcrecordid>eNqNjzFPwzAUhD2A1AL9AWxPYjbYsVGSDaltxAIMYU5lm1fhqorNsz3wZ_itWIWNhek73Z1OOsaupbiVQrR3ScpOtVzIjje9ElycsaUUuuW6U92CXaR0ELWne7lkX4Ox5J3JPsxgP2F7RJcpxPdAmL2DDcaQ_CkNe3g2c-ADTqlYUNPLiXoCM7_BH_dh9D-ymUBtYMxUXC6EUKfWhmzF4C1SApNgLBHJmWicz4HgyWQkb47pip3vK3D1y0t2M2xf1488UvgomPLuEArNNdo18l73rRL18v9a3_O-XlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154973029</pqid></control><display><type>article</type><title>Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials</title><source>SpringerLink Journals</source><creator>Hajalilou, Abdollah ; Abouzari-Lotf, Ebrahim ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Kianvash, Abbas</creator><creatorcontrib>Hajalilou, Abdollah ; Abouzari-Lotf, Ebrahim ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Kianvash, Abbas</creatorcontrib><description>Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was ~ 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~ 11.26 emu/g) compared with Fe3O4 powder (~ 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of ~ - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.</description><identifier>ISSN: 1047-4838</identifier><identifier>DOI: 10.1007/s11837-018-2930-0</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Carbon fibers ; Core-shell structure ; Electrochemical analysis ; Electrodes ; Electrophoretic deposition ; Energy ; Energy storage ; Energy transmission ; Ethanol ; Fourier transforms ; Infrared analysis ; Iron oxides ; Magnetic properties ; Magnetic saturation ; Nanoparticles ; Particle size ; Scanning electron microscopy ; Silicon dioxide ; Spectrum analysis ; Surfactants ; Synthesis ; Tetraethyl orthosilicate ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>JOM (1989), 2018-08, Vol.70 (8), p.1404-1410</ispartof><rights>Copyright Springer Science & Business Media Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hajalilou, Abdollah</creatorcontrib><creatorcontrib>Abouzari-Lotf, Ebrahim</creatorcontrib><creatorcontrib>Etemadifar, Reza</creatorcontrib><creatorcontrib>Abbasi-Chianeh, Vahid</creatorcontrib><creatorcontrib>Kianvash, Abbas</creatorcontrib><title>Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials</title><title>JOM (1989)</title><description>Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was ~ 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~ 11.26 emu/g) compared with Fe3O4 powder (~ 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of ~ - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.</description><subject>Carbon fibers</subject><subject>Core-shell structure</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrophoretic deposition</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy transmission</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Iron oxides</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Tetraethyl orthosilicate</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>1047-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjzFPwzAUhD2A1AL9AWxPYjbYsVGSDaltxAIMYU5lm1fhqorNsz3wZ_itWIWNhek73Z1OOsaupbiVQrR3ScpOtVzIjje9ElycsaUUuuW6U92CXaR0ELWne7lkX4Ox5J3JPsxgP2F7RJcpxPdAmL2DDcaQ_CkNe3g2c-ADTqlYUNPLiXoCM7_BH_dh9D-ymUBtYMxUXC6EUKfWhmzF4C1SApNgLBHJmWicz4HgyWQkb47pip3vK3D1y0t2M2xf1488UvgomPLuEArNNdo18l73rRL18v9a3_O-XlA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hajalilou, Abdollah</creator><creator>Abouzari-Lotf, Ebrahim</creator><creator>Etemadifar, Reza</creator><creator>Abbasi-Chianeh, Vahid</creator><creator>Kianvash, Abbas</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180801</creationdate><title>Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials</title><author>Hajalilou, Abdollah ; Abouzari-Lotf, Ebrahim ; Etemadifar, Reza ; Abbasi-Chianeh, Vahid ; Kianvash, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21549730293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon fibers</topic><topic>Core-shell structure</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrophoretic deposition</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy transmission</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Iron oxides</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Tetraethyl orthosilicate</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajalilou, Abdollah</creatorcontrib><creatorcontrib>Abouzari-Lotf, Ebrahim</creatorcontrib><creatorcontrib>Etemadifar, Reza</creatorcontrib><creatorcontrib>Abbasi-Chianeh, Vahid</creatorcontrib><creatorcontrib>Kianvash, Abbas</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajalilou, Abdollah</au><au>Abouzari-Lotf, Ebrahim</au><au>Etemadifar, Reza</au><au>Abbasi-Chianeh, Vahid</au><au>Kianvash, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials</atitle><jtitle>JOM (1989)</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>70</volume><issue>8</issue><spage>1404</spage><epage>1410</epage><pages>1404-1410</pages><issn>1047-4838</issn><abstract>Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was ~ 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~ 11.26 emu/g) compared with Fe3O4 powder (~ 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of ~ - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11837-018-2930-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2018-08, Vol.70 (8), p.1404-1410 |
issn | 1047-4838 |
language | eng |
recordid | cdi_proquest_journals_2154973029 |
source | SpringerLink Journals |
subjects | Carbon fibers Core-shell structure Electrochemical analysis Electrodes Electrophoretic deposition Energy Energy storage Energy transmission Ethanol Fourier transforms Infrared analysis Iron oxides Magnetic properties Magnetic saturation Nanoparticles Particle size Scanning electron microscopy Silicon dioxide Spectrum analysis Surfactants Synthesis Tetraethyl orthosilicate Transmission electron microscopy X-ray diffraction |
title | Fabrication by Electrophoretic Deposition of Nano-Fe^sub 3^O^sub 4^ and Fe^sub 3^O^sub 4^@SiO^sub 2^ 3D Structure on Carbon Fibers as Supercapacitor Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20by%20Electrophoretic%20Deposition%20of%20Nano-Fe%5Esub%203%5EO%5Esub%204%5E%20and%20Fe%5Esub%203%5EO%5Esub%204%5E@SiO%5Esub%202%5E%203D%20Structure%20on%20Carbon%20Fibers%20as%20Supercapacitor%20Materials&rft.jtitle=JOM%20(1989)&rft.au=Hajalilou,%20Abdollah&rft.date=2018-08-01&rft.volume=70&rft.issue=8&rft.spage=1404&rft.epage=1410&rft.pages=1404-1410&rft.issn=1047-4838&rft_id=info:doi/10.1007/s11837-018-2930-0&rft_dat=%3Cproquest%3E2154973029%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154973029&rft_id=info:pmid/&rfr_iscdi=true |