Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field
•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2018-12, Vol.177, p.249-257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | |
container_start_page | 249 |
container_title | Energy conversion and management |
container_volume | 177 |
creator | Shi, Lei He, Yurong Hu, Yanwei Wang, Xinzhi |
description | •The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally.
Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure. |
doi_str_mv | 10.1016/j.enconman.2018.09.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154715288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418310495</els_id><sourcerecordid>2154715288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</originalsourceid><addsrcrecordid>eNqFUE1rGzEQFaGBukn_QhHkvJuRtLta3RJM0wZMcnHOQpZGtcxa2kjrQv59FdyccxqYeR_zHiE_GLQM2HB7aDHaFI8mthzY2IJqoRsuyIqNUjWcc_mFrICpoRkVdF_Jt1IOACB6GFZk3u4xH9O8fyvBmonOOc2Yl4CFJk8fUDx3d-unLY0mJj-dgqMmOlrtlpymyewmpHs0C12yicVjppXtU67PWKSn6OrmaP5EXIKlPuDkrsmlN1PB7__nFXl5-Lld_242z78e1_ebxooOlsZzwXsPkonBmI4zO4BlY2-5cvXSmUEq9G5nJUgxSu9sJ5wS3nupTL9TSlyRm7NuTfR6wrLoQzrlWC01Z30nWc_HsaKGM8rmVEpGr-ccjia_aQb6vV190B_t6vd2NShd263EuzMRa4a_AbMuNlQkupDRLtql8JnEPz_9iCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154715288</pqid></control><display><type>article</type><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</creator><creatorcontrib>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</creatorcontrib><description>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally.
Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.09.046</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Controllable heat transfer ; Convection ; Convective heat transfer ; Enclosures ; Fe3O4@CNT nanofluid ; Free convection ; Heat exchange ; Heat transfer ; Heat transfer coefficients ; Iron oxides ; Magnetic fields ; Nanofluids ; Nanoparticles ; Natural convection ; Stability ; Thermal conductivity ; Thermophysical properties</subject><ispartof>Energy conversion and management, 2018-12, Vol.177, p.249-257</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</citedby><cites>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</cites><orcidid>0000-0003-3009-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890418310495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Yurong</creatorcontrib><creatorcontrib>Hu, Yanwei</creatorcontrib><creatorcontrib>Wang, Xinzhi</creatorcontrib><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><title>Energy conversion and management</title><description>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally.
Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</description><subject>Controllable heat transfer</subject><subject>Convection</subject><subject>Convective heat transfer</subject><subject>Enclosures</subject><subject>Fe3O4@CNT nanofluid</subject><subject>Free convection</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Natural convection</subject><subject>Stability</subject><subject>Thermal conductivity</subject><subject>Thermophysical properties</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rGzEQFaGBukn_QhHkvJuRtLta3RJM0wZMcnHOQpZGtcxa2kjrQv59FdyccxqYeR_zHiE_GLQM2HB7aDHaFI8mthzY2IJqoRsuyIqNUjWcc_mFrICpoRkVdF_Jt1IOACB6GFZk3u4xH9O8fyvBmonOOc2Yl4CFJk8fUDx3d-unLY0mJj-dgqMmOlrtlpymyewmpHs0C12yicVjppXtU67PWKSn6OrmaP5EXIKlPuDkrsmlN1PB7__nFXl5-Lld_242z78e1_ebxooOlsZzwXsPkonBmI4zO4BlY2-5cvXSmUEq9G5nJUgxSu9sJ5wS3nupTL9TSlyRm7NuTfR6wrLoQzrlWC01Z30nWc_HsaKGM8rmVEpGr-ccjia_aQb6vV190B_t6vd2NShd263EuzMRa4a_AbMuNlQkupDRLtql8JnEPz_9iCs</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Shi, Lei</creator><creator>He, Yurong</creator><creator>Hu, Yanwei</creator><creator>Wang, Xinzhi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3009-0468</orcidid></search><sort><creationdate>20181201</creationdate><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><author>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Controllable heat transfer</topic><topic>Convection</topic><topic>Convective heat transfer</topic><topic>Enclosures</topic><topic>Fe3O4@CNT nanofluid</topic><topic>Free convection</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Natural convection</topic><topic>Stability</topic><topic>Thermal conductivity</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Yurong</creatorcontrib><creatorcontrib>Hu, Yanwei</creatorcontrib><creatorcontrib>Wang, Xinzhi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Lei</au><au>He, Yurong</au><au>Hu, Yanwei</au><au>Wang, Xinzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</atitle><jtitle>Energy conversion and management</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>177</volume><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally.
Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2018.09.046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3009-0468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2018-12, Vol.177, p.249-257 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2154715288 |
source | Elsevier ScienceDirect Journals |
subjects | Controllable heat transfer Convection Convective heat transfer Enclosures Fe3O4@CNT nanofluid Free convection Heat exchange Heat transfer Heat transfer coefficients Iron oxides Magnetic fields Nanofluids Nanoparticles Natural convection Stability Thermal conductivity Thermophysical properties |
title | Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20properties%20of%20Fe3O4@CNT%20nanofluid%20and%20controllable%20heat%20transfer%20performance%20under%20magnetic%20field&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Shi,%20Lei&rft.date=2018-12-01&rft.volume=177&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.09.046&rft_dat=%3Cproquest_cross%3E2154715288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154715288&rft_id=info:pmid/&rft_els_id=S0196890418310495&rfr_iscdi=true |