Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field

•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2018-12, Vol.177, p.249-257
Hauptverfasser: Shi, Lei, He, Yurong, Hu, Yanwei, Wang, Xinzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 249
container_title Energy conversion and management
container_volume 177
creator Shi, Lei
He, Yurong
Hu, Yanwei
Wang, Xinzhi
description •The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.
doi_str_mv 10.1016/j.enconman.2018.09.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154715288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890418310495</els_id><sourcerecordid>2154715288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</originalsourceid><addsrcrecordid>eNqFUE1rGzEQFaGBukn_QhHkvJuRtLta3RJM0wZMcnHOQpZGtcxa2kjrQv59FdyccxqYeR_zHiE_GLQM2HB7aDHaFI8mthzY2IJqoRsuyIqNUjWcc_mFrICpoRkVdF_Jt1IOACB6GFZk3u4xH9O8fyvBmonOOc2Yl4CFJk8fUDx3d-unLY0mJj-dgqMmOlrtlpymyewmpHs0C12yicVjppXtU67PWKSn6OrmaP5EXIKlPuDkrsmlN1PB7__nFXl5-Lld_242z78e1_ebxooOlsZzwXsPkonBmI4zO4BlY2-5cvXSmUEq9G5nJUgxSu9sJ5wS3nupTL9TSlyRm7NuTfR6wrLoQzrlWC01Z30nWc_HsaKGM8rmVEpGr-ccjia_aQb6vV190B_t6vd2NShd263EuzMRa4a_AbMuNlQkupDRLtql8JnEPz_9iCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154715288</pqid></control><display><type>article</type><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</creator><creatorcontrib>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</creatorcontrib><description>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2018.09.046</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Controllable heat transfer ; Convection ; Convective heat transfer ; Enclosures ; Fe3O4@CNT nanofluid ; Free convection ; Heat exchange ; Heat transfer ; Heat transfer coefficients ; Iron oxides ; Magnetic fields ; Nanofluids ; Nanoparticles ; Natural convection ; Stability ; Thermal conductivity ; Thermophysical properties</subject><ispartof>Energy conversion and management, 2018-12, Vol.177, p.249-257</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</citedby><cites>FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</cites><orcidid>0000-0003-3009-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890418310495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Yurong</creatorcontrib><creatorcontrib>Hu, Yanwei</creatorcontrib><creatorcontrib>Wang, Xinzhi</creatorcontrib><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><title>Energy conversion and management</title><description>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</description><subject>Controllable heat transfer</subject><subject>Convection</subject><subject>Convective heat transfer</subject><subject>Enclosures</subject><subject>Fe3O4@CNT nanofluid</subject><subject>Free convection</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Iron oxides</subject><subject>Magnetic fields</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Natural convection</subject><subject>Stability</subject><subject>Thermal conductivity</subject><subject>Thermophysical properties</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rGzEQFaGBukn_QhHkvJuRtLta3RJM0wZMcnHOQpZGtcxa2kjrQv59FdyccxqYeR_zHiE_GLQM2HB7aDHaFI8mthzY2IJqoRsuyIqNUjWcc_mFrICpoRkVdF_Jt1IOACB6GFZk3u4xH9O8fyvBmonOOc2Yl4CFJk8fUDx3d-unLY0mJj-dgqMmOlrtlpymyewmpHs0C12yicVjppXtU67PWKSn6OrmaP5EXIKlPuDkrsmlN1PB7__nFXl5-Lld_242z78e1_ebxooOlsZzwXsPkonBmI4zO4BlY2-5cvXSmUEq9G5nJUgxSu9sJ5wS3nupTL9TSlyRm7NuTfR6wrLoQzrlWC01Z30nWc_HsaKGM8rmVEpGr-ccjia_aQb6vV190B_t6vd2NShd263EuzMRa4a_AbMuNlQkupDRLtql8JnEPz_9iCs</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Shi, Lei</creator><creator>He, Yurong</creator><creator>Hu, Yanwei</creator><creator>Wang, Xinzhi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3009-0468</orcidid></search><sort><creationdate>20181201</creationdate><title>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</title><author>Shi, Lei ; He, Yurong ; Hu, Yanwei ; Wang, Xinzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f2325f07136aa421c60c185c29d2324a679efdbc707387fdc43d93fff79a5b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Controllable heat transfer</topic><topic>Convection</topic><topic>Convective heat transfer</topic><topic>Enclosures</topic><topic>Fe3O4@CNT nanofluid</topic><topic>Free convection</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Iron oxides</topic><topic>Magnetic fields</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Natural convection</topic><topic>Stability</topic><topic>Thermal conductivity</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Yurong</creatorcontrib><creatorcontrib>Hu, Yanwei</creatorcontrib><creatorcontrib>Wang, Xinzhi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Lei</au><au>He, Yurong</au><au>Hu, Yanwei</au><au>Wang, Xinzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field</atitle><jtitle>Energy conversion and management</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>177</volume><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The heat transfer could be controlled by the strength and direction of magnetic field.•Thermophysical properties of Fe3O4@CNT nanofluid were measured and used in simulation.•The influence of magnetic fields was researched numerically and experimentally. Currently, natural convection with nanofluid depends on the addition of nanoparticles with a high thermal conductivity to increase the heat transfer performance, often leading to limited increase in heat transfer rate and efficiency. Herein, a magnetically controlled heat transfer method was evaluated. This method enables a rectangular enclosure filled with Fe3O4@CNT nanofluid to achieve controllable heat exchange. Compared with conventional natural convective heat transfer, the magnetically controlled heat transfer method increased the thresholds of heat transfer efficiency by increasing the convective heat transfer. The heat transfer and flow of natural convection can be controlled by the strength and direction of magnetic field. The increase in heat transfer depends on the direction of magnetic field, and the strength of magnetic field determines the degree of heat transfer. This study provides a method to achieve superior convective heat transfer coefficients by controlling the magnetic nanoparticle distribution in a rectangular enclosure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2018.09.046</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3009-0468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2018-12, Vol.177, p.249-257
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2154715288
source Elsevier ScienceDirect Journals
subjects Controllable heat transfer
Convection
Convective heat transfer
Enclosures
Fe3O4@CNT nanofluid
Free convection
Heat exchange
Heat transfer
Heat transfer coefficients
Iron oxides
Magnetic fields
Nanofluids
Nanoparticles
Natural convection
Stability
Thermal conductivity
Thermophysical properties
title Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20properties%20of%20Fe3O4@CNT%20nanofluid%20and%20controllable%20heat%20transfer%20performance%20under%20magnetic%20field&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Shi,%20Lei&rft.date=2018-12-01&rft.volume=177&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2018.09.046&rft_dat=%3Cproquest_cross%3E2154715288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154715288&rft_id=info:pmid/&rft_els_id=S0196890418310495&rfr_iscdi=true