Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries

A spray printing manufacturing approach to lithium-ion batteries was investigated with a focus on minimizing inactive fractions and maximizing energy and power densities of printable electrodes. Using a lithium titanate based anode initially and comparing with conventional electrodes, the effects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-12, Vol.292, p.546-557
Hauptverfasser: Lee, Sang Ho, Huang, Chun, Johnston, Colin, Grant, Patrick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue
container_start_page 546
container_title Electrochimica acta
container_volume 292
creator Lee, Sang Ho
Huang, Chun
Johnston, Colin
Grant, Patrick S.
description A spray printing manufacturing approach to lithium-ion batteries was investigated with a focus on minimizing inactive fractions and maximizing energy and power densities of printable electrodes. Using a lithium titanate based anode initially and comparing with conventional electrodes, the effects of conductivity enhancer and binder fractions, post-calendaring effects, different electrode manufacturing methods, conductivity enhancer types and electrode thicknesses were explored, and optimum electrode structures were identified. These insights were then applied to a lithium iron phosphate based cathode, and full spray printed lithium titanate/lithium iron phosphate cell configurations were investigated. Notably, the full-cell battery with a 1:1 capacity ratio of lithium titanate to lithium iron phosphate had a stable specific energy density of ∼300 Wh/kg and a power density of ∼2500 W/kg, showing the promise of layer-by-layer spray printing to realize fully the intrinsic properties of electrode materials in lithium-ion battery cells. Electrochemical behavior of layer-by-layer spray printed electrodes was investigated based on lithium titanate anodes and lithium iron phosphate cathodes to quantify the best structural functionalities and combinations and then to establish basic design rules of printable electrode systems. The parameters investigated were: (1) minimizing inactive fractions; (2) quantifying the calendaring effect; (3) comparative performances of identical spray printed and slurry cast electrodes; (4) optimizing the conductivity enhancers; (5) investigating electrode thickness-dependent properties; and (6) balancing LTO:LFP capacities in full-cell battery systems. [Display omitted]
doi_str_mv 10.1016/j.electacta.2018.09.132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154708524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618321285</els_id><sourcerecordid>2154708524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-3320e0625a8e450acd893b33c40d8e1e924a23d02f5ded2ba150fbdf0b85202b3</originalsourceid><addsrcrecordid>eNqFUNtKAzEQDaJgrX6DCz7vOkn2kn0sxUuh4IP6JoTsZrbN0m7WJBXq15u24qswMLdzZjiHkFsKGQVa3vcZbrANKkbGgIoM6oxydkYmVFQ85aKoz8kEgPI0L0V5Sa687wGgKiuYkI_X0al9MjozBDOsEjXoxI7BbM23CsYOie3izGr0x1WrwvrYdNYla7NaJyO6WG_V0GKyNOkiUhoVAjqD_ppcdGrj8eY3T8n748Pb_Dldvjwt5rNl2uYlhJRzBgglK5TAvADValHzhvM2By2QYs1yxbgG1hUaNWsULaBrdAeNKBiwhk_J3enu6OznDn2Qvd25Ib6UjBZ5BRGXR1R1QrXOeu-wk1H1Vrm9pCAPVspe_lkpD1ZKqGW0MjJnJyZGEV8GnfStwahYGxfxUlvz740f7emBsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154708524</pqid></control><display><type>article</type><title>Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Sang Ho ; Huang, Chun ; Johnston, Colin ; Grant, Patrick S.</creator><creatorcontrib>Lee, Sang Ho ; Huang, Chun ; Johnston, Colin ; Grant, Patrick S.</creatorcontrib><description>A spray printing manufacturing approach to lithium-ion batteries was investigated with a focus on minimizing inactive fractions and maximizing energy and power densities of printable electrodes. Using a lithium titanate based anode initially and comparing with conventional electrodes, the effects of conductivity enhancer and binder fractions, post-calendaring effects, different electrode manufacturing methods, conductivity enhancer types and electrode thicknesses were explored, and optimum electrode structures were identified. These insights were then applied to a lithium iron phosphate based cathode, and full spray printed lithium titanate/lithium iron phosphate cell configurations were investigated. Notably, the full-cell battery with a 1:1 capacity ratio of lithium titanate to lithium iron phosphate had a stable specific energy density of ∼300 Wh/kg and a power density of ∼2500 W/kg, showing the promise of layer-by-layer spray printing to realize fully the intrinsic properties of electrode materials in lithium-ion battery cells. Electrochemical behavior of layer-by-layer spray printed electrodes was investigated based on lithium titanate anodes and lithium iron phosphate cathodes to quantify the best structural functionalities and combinations and then to establish basic design rules of printable electrode systems. The parameters investigated were: (1) minimizing inactive fractions; (2) quantifying the calendaring effect; (3) comparative performances of identical spray printed and slurry cast electrodes; (4) optimizing the conductivity enhancers; (5) investigating electrode thickness-dependent properties; and (6) balancing LTO:LFP capacities in full-cell battery systems. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.09.132</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anode effect ; Batteries ; Cathodes ; Conductivity ; Electrode materials ; Electrodes ; Flux density ; Fuel cells ; Iron ; Layer-by-layer structuring ; Lithium ; Lithium iron phosphate ; Lithium titanate ; Lithium-ion batteries ; Lithium-ion battery ; Optimization ; Printing ; Production methods ; Rechargeable batteries ; Spray printing</subject><ispartof>Electrochimica acta, 2018-12, Vol.292, p.546-557</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-3320e0625a8e450acd893b33c40d8e1e924a23d02f5ded2ba150fbdf0b85202b3</citedby><cites>FETCH-LOGICAL-c460t-3320e0625a8e450acd893b33c40d8e1e924a23d02f5ded2ba150fbdf0b85202b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2018.09.132$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Lee, Sang Ho</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Johnston, Colin</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><title>Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries</title><title>Electrochimica acta</title><description>A spray printing manufacturing approach to lithium-ion batteries was investigated with a focus on minimizing inactive fractions and maximizing energy and power densities of printable electrodes. Using a lithium titanate based anode initially and comparing with conventional electrodes, the effects of conductivity enhancer and binder fractions, post-calendaring effects, different electrode manufacturing methods, conductivity enhancer types and electrode thicknesses were explored, and optimum electrode structures were identified. These insights were then applied to a lithium iron phosphate based cathode, and full spray printed lithium titanate/lithium iron phosphate cell configurations were investigated. Notably, the full-cell battery with a 1:1 capacity ratio of lithium titanate to lithium iron phosphate had a stable specific energy density of ∼300 Wh/kg and a power density of ∼2500 W/kg, showing the promise of layer-by-layer spray printing to realize fully the intrinsic properties of electrode materials in lithium-ion battery cells. Electrochemical behavior of layer-by-layer spray printed electrodes was investigated based on lithium titanate anodes and lithium iron phosphate cathodes to quantify the best structural functionalities and combinations and then to establish basic design rules of printable electrode systems. The parameters investigated were: (1) minimizing inactive fractions; (2) quantifying the calendaring effect; (3) comparative performances of identical spray printed and slurry cast electrodes; (4) optimizing the conductivity enhancers; (5) investigating electrode thickness-dependent properties; and (6) balancing LTO:LFP capacities in full-cell battery systems. [Display omitted]</description><subject>Anode effect</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Conductivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Flux density</subject><subject>Fuel cells</subject><subject>Iron</subject><subject>Layer-by-layer structuring</subject><subject>Lithium</subject><subject>Lithium iron phosphate</subject><subject>Lithium titanate</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Optimization</subject><subject>Printing</subject><subject>Production methods</subject><subject>Rechargeable batteries</subject><subject>Spray printing</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUNtKAzEQDaJgrX6DCz7vOkn2kn0sxUuh4IP6JoTsZrbN0m7WJBXq15u24qswMLdzZjiHkFsKGQVa3vcZbrANKkbGgIoM6oxydkYmVFQ85aKoz8kEgPI0L0V5Sa687wGgKiuYkI_X0al9MjozBDOsEjXoxI7BbM23CsYOie3izGr0x1WrwvrYdNYla7NaJyO6WG_V0GKyNOkiUhoVAjqD_ppcdGrj8eY3T8n748Pb_Dldvjwt5rNl2uYlhJRzBgglK5TAvADValHzhvM2By2QYs1yxbgG1hUaNWsULaBrdAeNKBiwhk_J3enu6OznDn2Qvd25Ib6UjBZ5BRGXR1R1QrXOeu-wk1H1Vrm9pCAPVspe_lkpD1ZKqGW0MjJnJyZGEV8GnfStwahYGxfxUlvz740f7emBsg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lee, Sang Ho</creator><creator>Huang, Chun</creator><creator>Johnston, Colin</creator><creator>Grant, Patrick S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181201</creationdate><title>Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries</title><author>Lee, Sang Ho ; Huang, Chun ; Johnston, Colin ; Grant, Patrick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-3320e0625a8e450acd893b33c40d8e1e924a23d02f5ded2ba150fbdf0b85202b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anode effect</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Conductivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Flux density</topic><topic>Fuel cells</topic><topic>Iron</topic><topic>Layer-by-layer structuring</topic><topic>Lithium</topic><topic>Lithium iron phosphate</topic><topic>Lithium titanate</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Optimization</topic><topic>Printing</topic><topic>Production methods</topic><topic>Rechargeable batteries</topic><topic>Spray printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Ho</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Johnston, Colin</creatorcontrib><creatorcontrib>Grant, Patrick S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Ho</au><au>Huang, Chun</au><au>Johnston, Colin</au><au>Grant, Patrick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>292</volume><spage>546</spage><epage>557</epage><pages>546-557</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>A spray printing manufacturing approach to lithium-ion batteries was investigated with a focus on minimizing inactive fractions and maximizing energy and power densities of printable electrodes. Using a lithium titanate based anode initially and comparing with conventional electrodes, the effects of conductivity enhancer and binder fractions, post-calendaring effects, different electrode manufacturing methods, conductivity enhancer types and electrode thicknesses were explored, and optimum electrode structures were identified. These insights were then applied to a lithium iron phosphate based cathode, and full spray printed lithium titanate/lithium iron phosphate cell configurations were investigated. Notably, the full-cell battery with a 1:1 capacity ratio of lithium titanate to lithium iron phosphate had a stable specific energy density of ∼300 Wh/kg and a power density of ∼2500 W/kg, showing the promise of layer-by-layer spray printing to realize fully the intrinsic properties of electrode materials in lithium-ion battery cells. Electrochemical behavior of layer-by-layer spray printed electrodes was investigated based on lithium titanate anodes and lithium iron phosphate cathodes to quantify the best structural functionalities and combinations and then to establish basic design rules of printable electrode systems. The parameters investigated were: (1) minimizing inactive fractions; (2) quantifying the calendaring effect; (3) comparative performances of identical spray printed and slurry cast electrodes; (4) optimizing the conductivity enhancers; (5) investigating electrode thickness-dependent properties; and (6) balancing LTO:LFP capacities in full-cell battery systems. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.09.132</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-12, Vol.292, p.546-557
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2154708524
source Elsevier ScienceDirect Journals
subjects Anode effect
Batteries
Cathodes
Conductivity
Electrode materials
Electrodes
Flux density
Fuel cells
Iron
Layer-by-layer structuring
Lithium
Lithium iron phosphate
Lithium titanate
Lithium-ion batteries
Lithium-ion battery
Optimization
Printing
Production methods
Rechargeable batteries
Spray printing
title Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20printing%20and%20optimization%20of%20anodes%20and%20cathodes%20for%20high%20performance%20Li-Ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Lee,%20Sang%20Ho&rft.date=2018-12-01&rft.volume=292&rft.spage=546&rft.epage=557&rft.pages=546-557&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.09.132&rft_dat=%3Cproquest_cross%3E2154708524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154708524&rft_id=info:pmid/&rft_els_id=S0013468618321285&rfr_iscdi=true