Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1
Aerosol processes and, in particular, aerosol‐cloud interactions cut across the traditional physical‐Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effecti...
Gespeichert in:
Veröffentlicht in: | Journal of advances in modeling earth systems 2018-11, Vol.10 (11), p.2786-2805 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2805 |
---|---|
container_issue | 11 |
container_start_page | 2786 |
container_title | Journal of advances in modeling earth systems |
container_volume | 10 |
creator | Mulcahy, J. P. Jones, C. Sellar, A. Johnson, B. Boutle, I. A. Jones, A. Andrews, T. Rumbold, S. T. Mollard, J. Bellouin, N. Johnson, C. E. Williams, K. D. Grosvenor, D. P. McCoy, D. T. |
description | Aerosol processes and, in particular, aerosol‐cloud interactions cut across the traditional physical‐Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3‐GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.
Key Points
The HadGEM3‐GA7 climate model has a large, negative aerosol ERF resulting in an unrealistic negative total anthropogenic forcing of climate
The aerosol ERF is shown to be highly sensitive to the underlying physical and aerosol model processes and parameterizations
Through a combination of scientific model improvements the aerosol ERF is reduced by up to 50% from –2.75 to –1.45 W/m2 |
doi_str_mv | 10.1029/2018MS001464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154668256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154668256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-aeda15034fdd8fe3b848651e67af696a103bb1d2f771cc2547644c7aab4d63c93</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqWw4wMssSXgaztOsqyq9AGNqChdW44fKFWbFLst6t8TGhZdsZpZHN07MwjdA3kCQrNnSiAtFoQAF_wC9SDjNKJciMszf41uQlgRIoSgcQ_Np5utbw7W4IH1TWjWeO4bbUOwAava4Nw5q3fVweJ3ZSp1cqPG66r-xFWNJ8qM84Kd0OVrvijgFl05tQ727k_7aDnKP4aTaPY2ng4Hs0hzABIpaxTEhHFnTOosK1OeihisSJQTmVBAWFmCoS5JQGsa80RwrhOlSm4E0xnro4fubhv_a2_DTq6ava_bl5JC3BZNaSxa6rGjdFsueOvk1lcb5Y8SiPzdTJ5v1uKsw7-rtT3-y8qXQZFTkqSE_QC3nWs_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154668256</pqid></control><display><type>article</type><title>Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mulcahy, J. P. ; Jones, C. ; Sellar, A. ; Johnson, B. ; Boutle, I. A. ; Jones, A. ; Andrews, T. ; Rumbold, S. T. ; Mollard, J. ; Bellouin, N. ; Johnson, C. E. ; Williams, K. D. ; Grosvenor, D. P. ; McCoy, D. T.</creator><creatorcontrib>Mulcahy, J. P. ; Jones, C. ; Sellar, A. ; Johnson, B. ; Boutle, I. A. ; Jones, A. ; Andrews, T. ; Rumbold, S. T. ; Mollard, J. ; Bellouin, N. ; Johnson, C. E. ; Williams, K. D. ; Grosvenor, D. P. ; McCoy, D. T.</creatorcontrib><description>Aerosol processes and, in particular, aerosol‐cloud interactions cut across the traditional physical‐Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3‐GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.
Key Points
The HadGEM3‐GA7 climate model has a large, negative aerosol ERF resulting in an unrealistic negative total anthropogenic forcing of climate
The aerosol ERF is shown to be highly sensitive to the underlying physical and aerosol model processes and parameterizations
Through a combination of scientific model improvements the aerosol ERF is reduced by up to 50% from –2.75 to –1.45 W/m2</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1029/2018MS001464</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Aerosol effects ; aerosol forcing ; Aerosol-cloud interactions ; Aerosols ; Anthropogenic factors ; Black carbon ; Climate ; Climate models ; Cloud droplets ; Cloud-climate relationships ; Earth ; effective radiative forcing ; Interactions ; model development ; Optical properties ; Radiative forcing ; Sulphides</subject><ispartof>Journal of advances in modeling earth systems, 2018-11, Vol.10 (11), p.2786-2805</ispartof><rights>2018. Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-aeda15034fdd8fe3b848651e67af696a103bb1d2f771cc2547644c7aab4d63c93</citedby><cites>FETCH-LOGICAL-c4110-aeda15034fdd8fe3b848651e67af696a103bb1d2f771cc2547644c7aab4d63c93</cites><orcidid>0000-0003-1814-7601 ; 0000-0002-4919-7751 ; 0000-0002-0870-7380 ; 0000-0002-1485-4475 ; 0000-0003-2109-9559 ; 0000-0002-8248-8753 ; 0000-0001-8370-3438 ; 0000-0001-7026-7614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018MS001464$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018MS001464$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Mulcahy, J. P.</creatorcontrib><creatorcontrib>Jones, C.</creatorcontrib><creatorcontrib>Sellar, A.</creatorcontrib><creatorcontrib>Johnson, B.</creatorcontrib><creatorcontrib>Boutle, I. A.</creatorcontrib><creatorcontrib>Jones, A.</creatorcontrib><creatorcontrib>Andrews, T.</creatorcontrib><creatorcontrib>Rumbold, S. T.</creatorcontrib><creatorcontrib>Mollard, J.</creatorcontrib><creatorcontrib>Bellouin, N.</creatorcontrib><creatorcontrib>Johnson, C. E.</creatorcontrib><creatorcontrib>Williams, K. D.</creatorcontrib><creatorcontrib>Grosvenor, D. P.</creatorcontrib><creatorcontrib>McCoy, D. T.</creatorcontrib><title>Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1</title><title>Journal of advances in modeling earth systems</title><description>Aerosol processes and, in particular, aerosol‐cloud interactions cut across the traditional physical‐Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3‐GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.
Key Points
The HadGEM3‐GA7 climate model has a large, negative aerosol ERF resulting in an unrealistic negative total anthropogenic forcing of climate
The aerosol ERF is shown to be highly sensitive to the underlying physical and aerosol model processes and parameterizations
Through a combination of scientific model improvements the aerosol ERF is reduced by up to 50% from –2.75 to –1.45 W/m2</description><subject>Aerosol effects</subject><subject>aerosol forcing</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Anthropogenic factors</subject><subject>Black carbon</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cloud droplets</subject><subject>Cloud-climate relationships</subject><subject>Earth</subject><subject>effective radiative forcing</subject><subject>Interactions</subject><subject>model development</subject><subject>Optical properties</subject><subject>Radiative forcing</subject><subject>Sulphides</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAURC0EEqWw4wMssSXgaztOsqyq9AGNqChdW44fKFWbFLst6t8TGhZdsZpZHN07MwjdA3kCQrNnSiAtFoQAF_wC9SDjNKJciMszf41uQlgRIoSgcQ_Np5utbw7W4IH1TWjWeO4bbUOwAava4Nw5q3fVweJ3ZSp1cqPG66r-xFWNJ8qM84Kd0OVrvijgFl05tQ727k_7aDnKP4aTaPY2ng4Hs0hzABIpaxTEhHFnTOosK1OeihisSJQTmVBAWFmCoS5JQGsa80RwrhOlSm4E0xnro4fubhv_a2_DTq6ava_bl5JC3BZNaSxa6rGjdFsueOvk1lcb5Y8SiPzdTJ5v1uKsw7-rtT3-y8qXQZFTkqSE_QC3nWs_</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Mulcahy, J. P.</creator><creator>Jones, C.</creator><creator>Sellar, A.</creator><creator>Johnson, B.</creator><creator>Boutle, I. A.</creator><creator>Jones, A.</creator><creator>Andrews, T.</creator><creator>Rumbold, S. T.</creator><creator>Mollard, J.</creator><creator>Bellouin, N.</creator><creator>Johnson, C. E.</creator><creator>Williams, K. D.</creator><creator>Grosvenor, D. P.</creator><creator>McCoy, D. T.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1814-7601</orcidid><orcidid>https://orcid.org/0000-0002-4919-7751</orcidid><orcidid>https://orcid.org/0000-0002-0870-7380</orcidid><orcidid>https://orcid.org/0000-0002-1485-4475</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-8248-8753</orcidid><orcidid>https://orcid.org/0000-0001-8370-3438</orcidid><orcidid>https://orcid.org/0000-0001-7026-7614</orcidid></search><sort><creationdate>201811</creationdate><title>Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1</title><author>Mulcahy, J. P. ; Jones, C. ; Sellar, A. ; Johnson, B. ; Boutle, I. A. ; Jones, A. ; Andrews, T. ; Rumbold, S. T. ; Mollard, J. ; Bellouin, N. ; Johnson, C. E. ; Williams, K. D. ; Grosvenor, D. P. ; McCoy, D. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-aeda15034fdd8fe3b848651e67af696a103bb1d2f771cc2547644c7aab4d63c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerosol effects</topic><topic>aerosol forcing</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Anthropogenic factors</topic><topic>Black carbon</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cloud droplets</topic><topic>Cloud-climate relationships</topic><topic>Earth</topic><topic>effective radiative forcing</topic><topic>Interactions</topic><topic>model development</topic><topic>Optical properties</topic><topic>Radiative forcing</topic><topic>Sulphides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulcahy, J. P.</creatorcontrib><creatorcontrib>Jones, C.</creatorcontrib><creatorcontrib>Sellar, A.</creatorcontrib><creatorcontrib>Johnson, B.</creatorcontrib><creatorcontrib>Boutle, I. A.</creatorcontrib><creatorcontrib>Jones, A.</creatorcontrib><creatorcontrib>Andrews, T.</creatorcontrib><creatorcontrib>Rumbold, S. T.</creatorcontrib><creatorcontrib>Mollard, J.</creatorcontrib><creatorcontrib>Bellouin, N.</creatorcontrib><creatorcontrib>Johnson, C. E.</creatorcontrib><creatorcontrib>Williams, K. D.</creatorcontrib><creatorcontrib>Grosvenor, D. P.</creatorcontrib><creatorcontrib>McCoy, D. T.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulcahy, J. P.</au><au>Jones, C.</au><au>Sellar, A.</au><au>Johnson, B.</au><au>Boutle, I. A.</au><au>Jones, A.</au><au>Andrews, T.</au><au>Rumbold, S. T.</au><au>Mollard, J.</au><au>Bellouin, N.</au><au>Johnson, C. E.</au><au>Williams, K. D.</au><au>Grosvenor, D. P.</au><au>McCoy, D. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2018-11</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>2786</spage><epage>2805</epage><pages>2786-2805</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>Aerosol processes and, in particular, aerosol‐cloud interactions cut across the traditional physical‐Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3‐GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.
Key Points
The HadGEM3‐GA7 climate model has a large, negative aerosol ERF resulting in an unrealistic negative total anthropogenic forcing of climate
The aerosol ERF is shown to be highly sensitive to the underlying physical and aerosol model processes and parameterizations
Through a combination of scientific model improvements the aerosol ERF is reduced by up to 50% from –2.75 to –1.45 W/m2</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018MS001464</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1814-7601</orcidid><orcidid>https://orcid.org/0000-0002-4919-7751</orcidid><orcidid>https://orcid.org/0000-0002-0870-7380</orcidid><orcidid>https://orcid.org/0000-0002-1485-4475</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-8248-8753</orcidid><orcidid>https://orcid.org/0000-0001-8370-3438</orcidid><orcidid>https://orcid.org/0000-0001-7026-7614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-2466 |
ispartof | Journal of advances in modeling earth systems, 2018-11, Vol.10 (11), p.2786-2805 |
issn | 1942-2466 1942-2466 |
language | eng |
recordid | cdi_proquest_journals_2154668256 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aerosol effects aerosol forcing Aerosol-cloud interactions Aerosols Anthropogenic factors Black carbon Climate Climate models Cloud droplets Cloud-climate relationships Earth effective radiative forcing Interactions model development Optical properties Radiative forcing Sulphides |
title | Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Aerosol%20Processes%20and%20Effective%20Radiative%20Forcing%20in%20HadGEM3%20and%20UKESM1&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Mulcahy,%20J.%20P.&rft.date=2018-11&rft.volume=10&rft.issue=11&rft.spage=2786&rft.epage=2805&rft.pages=2786-2805&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1029/2018MS001464&rft_dat=%3Cproquest_cross%3E2154668256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154668256&rft_id=info:pmid/&rfr_iscdi=true |