Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation

Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2018-10, Vol.70 (10), p.2385-2391
Hauptverfasser: Wang, Zhigang, Liu, Xin, Xie, Feiming, Lai, Chaobin, Li, Hongwei, Zhang, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2391
container_issue 10
container_start_page 2385
container_title JOM (1989)
container_volume 70
creator Wang, Zhigang
Liu, Xin
Xie, Feiming
Lai, Chaobin
Li, Hongwei
Zhang, Qin
description Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε curve and minimum value of the − ∂(ln θ )/∂ ε – ε curve, the relationship between the critical strain ( ε c ) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of ε c required for DRX decreased with increase in the deformation temperature, and the relationship between ε c and the peak strain ( ε p ) was determined as ε c  = 0.49 ε p . Discontinuous DRX was clearly favored when the strain was lower than the critical value.
doi_str_mv 10.1007/s11837-018-3054-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154588526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154588526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuA62ieTWapU7WCIFh1GzKZpE2ZztQkFeqvN-0IrlzdB-ecy_2K4hKja4yQuIkYSyogwhJSxBkkR8UIc0Yhlhwf5x4xAZmk8rQ4i3GFsoeVeFSE6a7Ta2_AqzVhF5NuW_-tk-87cGeX-sv3AeiuAVXwyRvdgnkK2negd4DjKnwwMPOLJcxb2y3SEsw3wXeLrLK2BdPtYZj1CUyt68P6EHxenDjdRnvxW8fF-8P9WzWDzy-PT9XtMzRUkgQxF9KgieCsrHWDSiatdFYYbhvnJKZW1pSgpkF1WZeONsIJbLgQlPCSIYPpuLgacjeh_9zamNSq34Yun1Qko-FScjLJKjyoTOhjDNap_MFah53CSO3RqgGtymjVHq0i2UMGTzx8a8Nf8v-mH2YAe-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154588526</pqid></control><display><type>article</type><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><source>SpringerLink Journals</source><creator>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</creator><creatorcontrib>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</creatorcontrib><description>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε curve and minimum value of the − ∂(ln θ )/∂ ε – ε curve, the relationship between the critical strain ( ε c ) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of ε c required for DRX decreased with increase in the deformation temperature, and the relationship between ε c and the peak strain ( ε p ) was determined as ε c  = 0.49 ε p . Discontinuous DRX was clearly favored when the strain was lower than the critical value.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-3054-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Chemistry/Food Science ; Compressive strength ; Deformation ; Dislocations ; Dynamic recrystallization ; Earth Sciences ; Engineering ; Environment ; High temperature ; Microscopy ; Morphology ; Physics ; Polygonization ; Spring steels ; Steady flow ; Steel ; Strain rate ; Stress-strain curves ; Stress-strain relationships ; Technical Communication ; Temperature ; Thermal simulators ; Titanium alloys</subject><ispartof>JOM (1989), 2018-10, Vol.70 (10), p.2385-2391</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Copyright Springer Science &amp; Business Media Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</citedby><cites>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</cites><orcidid>0000-0002-7123-335X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-3054-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-3054-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Xie, Feiming</creatorcontrib><creatorcontrib>Lai, Chaobin</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε curve and minimum value of the − ∂(ln θ )/∂ ε – ε curve, the relationship between the critical strain ( ε c ) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of ε c required for DRX decreased with increase in the deformation temperature, and the relationship between ε c and the peak strain ( ε p ) was determined as ε c  = 0.49 ε p . Discontinuous DRX was clearly favored when the strain was lower than the critical value.</description><subject>Carbon</subject><subject>Chemistry/Food Science</subject><subject>Compressive strength</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Dynamic recrystallization</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>High temperature</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Physics</subject><subject>Polygonization</subject><subject>Spring steels</subject><subject>Steady flow</subject><subject>Steel</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Technical Communication</subject><subject>Temperature</subject><subject>Thermal simulators</subject><subject>Titanium alloys</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuA62ieTWapU7WCIFh1GzKZpE2ZztQkFeqvN-0IrlzdB-ecy_2K4hKja4yQuIkYSyogwhJSxBkkR8UIc0Yhlhwf5x4xAZmk8rQ4i3GFsoeVeFSE6a7Ta2_AqzVhF5NuW_-tk-87cGeX-sv3AeiuAVXwyRvdgnkK2negd4DjKnwwMPOLJcxb2y3SEsw3wXeLrLK2BdPtYZj1CUyt68P6EHxenDjdRnvxW8fF-8P9WzWDzy-PT9XtMzRUkgQxF9KgieCsrHWDSiatdFYYbhvnJKZW1pSgpkF1WZeONsIJbLgQlPCSIYPpuLgacjeh_9zamNSq34Yun1Qko-FScjLJKjyoTOhjDNap_MFah53CSO3RqgGtymjVHq0i2UMGTzx8a8Nf8v-mH2YAe-I</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Zhigang</creator><creator>Liu, Xin</creator><creator>Xie, Feiming</creator><creator>Lai, Chaobin</creator><creator>Li, Hongwei</creator><creator>Zhang, Qin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-7123-335X</orcidid></search><sort><creationdate>20181001</creationdate><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><author>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Chemistry/Food Science</topic><topic>Compressive strength</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Dynamic recrystallization</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>High temperature</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Physics</topic><topic>Polygonization</topic><topic>Spring steels</topic><topic>Steady flow</topic><topic>Steel</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Technical Communication</topic><topic>Temperature</topic><topic>Thermal simulators</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Xie, Feiming</creatorcontrib><creatorcontrib>Lai, Chaobin</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhigang</au><au>Liu, Xin</au><au>Xie, Feiming</au><au>Lai, Chaobin</au><au>Li, Hongwei</au><au>Zhang, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>70</volume><issue>10</issue><spage>2385</spage><epage>2391</epage><pages>2385-2391</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε curve and minimum value of the − ∂(ln θ )/∂ ε – ε curve, the relationship between the critical strain ( ε c ) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of ε c required for DRX decreased with increase in the deformation temperature, and the relationship between ε c and the peak strain ( ε p ) was determined as ε c  = 0.49 ε p . Discontinuous DRX was clearly favored when the strain was lower than the critical value.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-3054-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7123-335X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2018-10, Vol.70 (10), p.2385-2391
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2154588526
source SpringerLink Journals
subjects Carbon
Chemistry/Food Science
Compressive strength
Deformation
Dislocations
Dynamic recrystallization
Earth Sciences
Engineering
Environment
High temperature
Microscopy
Morphology
Physics
Polygonization
Spring steels
Steady flow
Steel
Strain rate
Stress-strain curves
Stress-strain relationships
Technical Communication
Temperature
Thermal simulators
Titanium alloys
title Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Recrystallization%20Behavior%20and%20Critical%20Strain%20of%2051CrV4%20High-Strength%20Spring%20Steel%20During%20Hot%20Deformation&rft.jtitle=JOM%20(1989)&rft.au=Wang,%20Zhigang&rft.date=2018-10-01&rft.volume=70&rft.issue=10&rft.spage=2385&rft.epage=2391&rft.pages=2385-2391&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-3054-2&rft_dat=%3Cproquest_cross%3E2154588526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154588526&rft_id=info:pmid/&rfr_iscdi=true