Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation
Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s −1 or 0.1 s −1 ; the maximum deformation degree was 50%. By considering the inflection of the ln θ – ε c...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2018-10, Vol.70 (10), p.2385-2391 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2391 |
---|---|
container_issue | 10 |
container_start_page | 2385 |
container_title | JOM (1989) |
container_volume | 70 |
creator | Wang, Zhigang Liu, Xin Xie, Feiming Lai, Chaobin Li, Hongwei Zhang, Qin |
description | Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s
−1
or 0.1 s
−1
; the maximum deformation degree was 50%. By considering the inflection of the ln
θ
–
ε
curve and minimum value of the − ∂(ln
θ
)/∂
ε
–
ε
curve, the relationship between the critical strain (
ε
c
) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of
ε
c
required for DRX decreased with increase in the deformation temperature, and the relationship between
ε
c
and the peak strain (
ε
p
) was determined as
ε
c
= 0.49
ε
p
. Discontinuous DRX was clearly favored when the strain was lower than the critical value. |
doi_str_mv | 10.1007/s11837-018-3054-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154588526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154588526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuA62ieTWapU7WCIFh1GzKZpE2ZztQkFeqvN-0IrlzdB-ecy_2K4hKja4yQuIkYSyogwhJSxBkkR8UIc0Yhlhwf5x4xAZmk8rQ4i3GFsoeVeFSE6a7Ta2_AqzVhF5NuW_-tk-87cGeX-sv3AeiuAVXwyRvdgnkK2negd4DjKnwwMPOLJcxb2y3SEsw3wXeLrLK2BdPtYZj1CUyt68P6EHxenDjdRnvxW8fF-8P9WzWDzy-PT9XtMzRUkgQxF9KgieCsrHWDSiatdFYYbhvnJKZW1pSgpkF1WZeONsIJbLgQlPCSIYPpuLgacjeh_9zamNSq34Yun1Qko-FScjLJKjyoTOhjDNap_MFah53CSO3RqgGtymjVHq0i2UMGTzx8a8Nf8v-mH2YAe-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154588526</pqid></control><display><type>article</type><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><source>SpringerLink Journals</source><creator>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</creator><creatorcontrib>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</creatorcontrib><description>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s
−1
or 0.1 s
−1
; the maximum deformation degree was 50%. By considering the inflection of the ln
θ
–
ε
curve and minimum value of the − ∂(ln
θ
)/∂
ε
–
ε
curve, the relationship between the critical strain (
ε
c
) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of
ε
c
required for DRX decreased with increase in the deformation temperature, and the relationship between
ε
c
and the peak strain (
ε
p
) was determined as
ε
c
= 0.49
ε
p
. Discontinuous DRX was clearly favored when the strain was lower than the critical value.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-3054-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Chemistry/Food Science ; Compressive strength ; Deformation ; Dislocations ; Dynamic recrystallization ; Earth Sciences ; Engineering ; Environment ; High temperature ; Microscopy ; Morphology ; Physics ; Polygonization ; Spring steels ; Steady flow ; Steel ; Strain rate ; Stress-strain curves ; Stress-strain relationships ; Technical Communication ; Temperature ; Thermal simulators ; Titanium alloys</subject><ispartof>JOM (1989), 2018-10, Vol.70 (10), p.2385-2391</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Copyright Springer Science & Business Media Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</citedby><cites>FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</cites><orcidid>0000-0002-7123-335X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-3054-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-3054-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Xie, Feiming</creatorcontrib><creatorcontrib>Lai, Chaobin</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s
−1
or 0.1 s
−1
; the maximum deformation degree was 50%. By considering the inflection of the ln
θ
–
ε
curve and minimum value of the − ∂(ln
θ
)/∂
ε
–
ε
curve, the relationship between the critical strain (
ε
c
) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of
ε
c
required for DRX decreased with increase in the deformation temperature, and the relationship between
ε
c
and the peak strain (
ε
p
) was determined as
ε
c
= 0.49
ε
p
. Discontinuous DRX was clearly favored when the strain was lower than the critical value.</description><subject>Carbon</subject><subject>Chemistry/Food Science</subject><subject>Compressive strength</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Dynamic recrystallization</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>High temperature</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Physics</subject><subject>Polygonization</subject><subject>Spring steels</subject><subject>Steady flow</subject><subject>Steel</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Technical Communication</subject><subject>Temperature</subject><subject>Thermal simulators</subject><subject>Titanium alloys</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuA62ieTWapU7WCIFh1GzKZpE2ZztQkFeqvN-0IrlzdB-ecy_2K4hKja4yQuIkYSyogwhJSxBkkR8UIc0Yhlhwf5x4xAZmk8rQ4i3GFsoeVeFSE6a7Ta2_AqzVhF5NuW_-tk-87cGeX-sv3AeiuAVXwyRvdgnkK2negd4DjKnwwMPOLJcxb2y3SEsw3wXeLrLK2BdPtYZj1CUyt68P6EHxenDjdRnvxW8fF-8P9WzWDzy-PT9XtMzRUkgQxF9KgieCsrHWDSiatdFYYbhvnJKZW1pSgpkF1WZeONsIJbLgQlPCSIYPpuLgacjeh_9zamNSq34Yun1Qko-FScjLJKjyoTOhjDNap_MFah53CSO3RqgGtymjVHq0i2UMGTzx8a8Nf8v-mH2YAe-I</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Zhigang</creator><creator>Liu, Xin</creator><creator>Xie, Feiming</creator><creator>Lai, Chaobin</creator><creator>Li, Hongwei</creator><creator>Zhang, Qin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-7123-335X</orcidid></search><sort><creationdate>20181001</creationdate><title>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</title><author>Wang, Zhigang ; Liu, Xin ; Xie, Feiming ; Lai, Chaobin ; Li, Hongwei ; Zhang, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1578c067549bad0948e8fe7c5edff813e8b320dd0b9b9f3d7f71c577325940c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Chemistry/Food Science</topic><topic>Compressive strength</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Dynamic recrystallization</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>High temperature</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Physics</topic><topic>Polygonization</topic><topic>Spring steels</topic><topic>Steady flow</topic><topic>Steel</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Technical Communication</topic><topic>Temperature</topic><topic>Thermal simulators</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Xie, Feiming</creatorcontrib><creatorcontrib>Lai, Chaobin</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhigang</au><au>Liu, Xin</au><au>Xie, Feiming</au><au>Lai, Chaobin</au><au>Li, Hongwei</au><au>Zhang, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>70</volume><issue>10</issue><spage>2385</spage><epage>2391</epage><pages>2385-2391</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Single-pass compression experiments have been performed on 51CrV4 spring steel using a Gleeble 3800 thermomechanical simulator at temperatures in the range of 800–1000°C and strain rate of 0.01 s
−1
or 0.1 s
−1
; the maximum deformation degree was 50%. By considering the inflection of the ln
θ
–
ε
curve and minimum value of the − ∂(ln
θ
)/∂
ε
–
ε
curve, the relationship between the critical strain (
ε
c
) of dynamic recrystallization (DRX) and the deformation temperature was determined. The results showed that steady flow behavior could be observed during low-temperature (800°C, 850°C) deformation, and dynamic recovery (DRV) regulated the trend of the stress–strain curve. Dislocation cell structures and polygonization were formed during the DRV stage. DRX of the alloy occurred when the deformation temperature reached a higher value (900°C, 1000°C). The amount of
ε
c
required for DRX decreased with increase in the deformation temperature, and the relationship between
ε
c
and the peak strain (
ε
p
) was determined as
ε
c
= 0.49
ε
p
. Discontinuous DRX was clearly favored when the strain was lower than the critical value.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-3054-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7123-335X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2018-10, Vol.70 (10), p.2385-2391 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2154588526 |
source | SpringerLink Journals |
subjects | Carbon Chemistry/Food Science Compressive strength Deformation Dislocations Dynamic recrystallization Earth Sciences Engineering Environment High temperature Microscopy Morphology Physics Polygonization Spring steels Steady flow Steel Strain rate Stress-strain curves Stress-strain relationships Technical Communication Temperature Thermal simulators Titanium alloys |
title | Dynamic Recrystallization Behavior and Critical Strain of 51CrV4 High-Strength Spring Steel During Hot Deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Recrystallization%20Behavior%20and%20Critical%20Strain%20of%2051CrV4%20High-Strength%20Spring%20Steel%20During%20Hot%20Deformation&rft.jtitle=JOM%20(1989)&rft.au=Wang,%20Zhigang&rft.date=2018-10-01&rft.volume=70&rft.issue=10&rft.spage=2385&rft.epage=2391&rft.pages=2385-2391&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-3054-2&rft_dat=%3Cproquest_cross%3E2154588526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154588526&rft_id=info:pmid/&rfr_iscdi=true |