On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)

In this paper, we proceed to develop a new approach which was formulated first in Ershkov (Acta Mech 228(7):2719–2723, 2017 ) for solving Poisson equations: a new type of the solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point) is suggested in the current research...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2019-03, Vol.230 (3), p.871-883
Hauptverfasser: Ershkov, Sergey V., Leshchenko, Dmytro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 883
container_issue 3
container_start_page 871
container_title Acta mechanica
container_volume 230
creator Ershkov, Sergey V.
Leshchenko, Dmytro
description In this paper, we proceed to develop a new approach which was formulated first in Ershkov (Acta Mech 228(7):2719–2723, 2017 ) for solving Poisson equations: a new type of the solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler–Poisson system of equations has been successfully explored for the existence of analytical solutions. As the main result, a new ansatz is suggested for solving Euler–Poisson equations: the Euler–Poisson equations are reduced to a system of three nonlinear ordinary differential equations of first order in regard to three functions Ω i ( i = 1 , 2 , 3 ); the proper elegant approximate solution has been obtained as a set of quasi-periodic cycles via re-inversing the proper elliptical integral. So the system of Euler–Poisson equations is proved to have analytical solutions (in quadratures) only in classical simplifying cases: (1) Lagrange’s case, or (2) Kovalevskaya’s case or (3) Euler’s case or other well-known but particular cases.
doi_str_mv 10.1007/s00707-018-2328-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2154456110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597251804</galeid><sourcerecordid>A597251804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ca00e8e987ee142fb3c90de7aa1c145bce60af6921d528ff12534bda7dd061343</originalsourceid><addsrcrecordid>eNqNkc9OHDEMxqOqSN0CD9BbpF7gMNTO_MnMESFokZDgUM5RNnG2oUuyJDO0e-Md-oY8CdlOJU5IlSVbsb5f4vhj7BPCCQLIL7kkkBVgX4la9JV8xxbY4VB1Qy3fswUAYNUOEj6wjznflZOQDS7Yz-vANQ_0i4_bDfHoeI7rRx9WfJOiITsl4i4mfj6tKT0__bmJPucYOD1MevQxZH6U_Mpbvox2y1Mc_3Z5fKTExx-F9b_J8k30YTw-YHtOrzMd_qv77Pbi_PvZt-rq-uvl2elVZeqhGSujAainoZdE2Ai3rM0AlqTWaLBpl4Y60K4bBNpW9M6haOtmabW0Fjqsm3qffZ7vLV94mCiP6i5OKZQnlcC2adoOEYrqZFat9JqUDy6OSZsSlu69iYGcL_3TDqREQGz_FyhLFi32sJsDZ8CkmHMipzbJ3-u0VQhq55qaXVPFNbVzTcnCiJnJRRtWlF5nfxt6ARP-mvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154456110</pqid></control><display><type>article</type><title>On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)</title><source>Springer Online Journals Complete</source><creator>Ershkov, Sergey V. ; Leshchenko, Dmytro</creator><creatorcontrib>Ershkov, Sergey V. ; Leshchenko, Dmytro</creatorcontrib><description>In this paper, we proceed to develop a new approach which was formulated first in Ershkov (Acta Mech 228(7):2719–2723, 2017 ) for solving Poisson equations: a new type of the solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler–Poisson system of equations has been successfully explored for the existence of analytical solutions. As the main result, a new ansatz is suggested for solving Euler–Poisson equations: the Euler–Poisson equations are reduced to a system of three nonlinear ordinary differential equations of first order in regard to three functions Ω i ( i = 1 , 2 , 3 ); the proper elegant approximate solution has been obtained as a set of quasi-periodic cycles via re-inversing the proper elliptical integral. So the system of Euler–Poisson equations is proved to have analytical solutions (in quadratures) only in classical simplifying cases: (1) Lagrange’s case, or (2) Kovalevskaya’s case or (3) Euler’s case or other well-known but particular cases.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-018-2328-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Differential equations ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Original Paper ; Quadratures ; Rigid structures ; Rotating bodies ; Rotation ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-03, Vol.230 (3), p.871-883</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ca00e8e987ee142fb3c90de7aa1c145bce60af6921d528ff12534bda7dd061343</citedby><cites>FETCH-LOGICAL-c394t-ca00e8e987ee142fb3c90de7aa1c145bce60af6921d528ff12534bda7dd061343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-018-2328-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-018-2328-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ershkov, Sergey V.</creatorcontrib><creatorcontrib>Leshchenko, Dmytro</creatorcontrib><title>On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, we proceed to develop a new approach which was formulated first in Ershkov (Acta Mech 228(7):2719–2723, 2017 ) for solving Poisson equations: a new type of the solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler–Poisson system of equations has been successfully explored for the existence of analytical solutions. As the main result, a new ansatz is suggested for solving Euler–Poisson equations: the Euler–Poisson equations are reduced to a system of three nonlinear ordinary differential equations of first order in regard to three functions Ω i ( i = 1 , 2 , 3 ); the proper elegant approximate solution has been obtained as a set of quasi-periodic cycles via re-inversing the proper elliptical integral. So the system of Euler–Poisson equations is proved to have analytical solutions (in quadratures) only in classical simplifying cases: (1) Lagrange’s case, or (2) Kovalevskaya’s case or (3) Euler’s case or other well-known but particular cases.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Quadratures</subject><subject>Rigid structures</subject><subject>Rotating bodies</subject><subject>Rotation</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc9OHDEMxqOqSN0CD9BbpF7gMNTO_MnMESFokZDgUM5RNnG2oUuyJDO0e-Md-oY8CdlOJU5IlSVbsb5f4vhj7BPCCQLIL7kkkBVgX4la9JV8xxbY4VB1Qy3fswUAYNUOEj6wjznflZOQDS7Yz-vANQ_0i4_bDfHoeI7rRx9WfJOiITsl4i4mfj6tKT0__bmJPucYOD1MevQxZH6U_Mpbvox2y1Mc_3Z5fKTExx-F9b_J8k30YTw-YHtOrzMd_qv77Pbi_PvZt-rq-uvl2elVZeqhGSujAainoZdE2Ai3rM0AlqTWaLBpl4Y60K4bBNpW9M6haOtmabW0Fjqsm3qffZ7vLV94mCiP6i5OKZQnlcC2adoOEYrqZFat9JqUDy6OSZsSlu69iYGcL_3TDqREQGz_FyhLFi32sJsDZ8CkmHMipzbJ3-u0VQhq55qaXVPFNbVzTcnCiJnJRRtWlF5nfxt6ARP-mvs</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Ershkov, Sergey V.</creator><creator>Leshchenko, Dmytro</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190301</creationdate><title>On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)</title><author>Ershkov, Sergey V. ; Leshchenko, Dmytro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ca00e8e987ee142fb3c90de7aa1c145bce60af6921d528ff12534bda7dd061343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Quadratures</topic><topic>Rigid structures</topic><topic>Rotating bodies</topic><topic>Rotation</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ershkov, Sergey V.</creatorcontrib><creatorcontrib>Leshchenko, Dmytro</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ershkov, Sergey V.</au><au>Leshchenko, Dmytro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>230</volume><issue>3</issue><spage>871</spage><epage>883</epage><pages>871-883</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this paper, we proceed to develop a new approach which was formulated first in Ershkov (Acta Mech 228(7):2719–2723, 2017 ) for solving Poisson equations: a new type of the solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler–Poisson system of equations has been successfully explored for the existence of analytical solutions. As the main result, a new ansatz is suggested for solving Euler–Poisson equations: the Euler–Poisson equations are reduced to a system of three nonlinear ordinary differential equations of first order in regard to three functions Ω i ( i = 1 , 2 , 3 ); the proper elegant approximate solution has been obtained as a set of quasi-periodic cycles via re-inversing the proper elliptical integral. So the system of Euler–Poisson equations is proved to have analytical solutions (in quadratures) only in classical simplifying cases: (1) Lagrange’s case, or (2) Kovalevskaya’s case or (3) Euler’s case or other well-known but particular cases.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-018-2328-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2019-03, Vol.230 (3), p.871-883
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2154456110
source Springer Online Journals Complete
subjects Classical and Continuum Physics
Control
Differential equations
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Mathematical analysis
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Original Paper
Quadratures
Rigid structures
Rotating bodies
Rotation
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title On a new type of solving procedure for Euler–Poisson equations (rigid body rotation over the fixed point)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20new%20type%20of%20solving%20procedure%20for%20Euler%E2%80%93Poisson%20equations%20(rigid%20body%20rotation%20over%20the%20fixed%20point)&rft.jtitle=Acta%20mechanica&rft.au=Ershkov,%20Sergey%20V.&rft.date=2019-03-01&rft.volume=230&rft.issue=3&rft.spage=871&rft.epage=883&rft.pages=871-883&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-018-2328-7&rft_dat=%3Cgale_proqu%3EA597251804%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154456110&rft_id=info:pmid/&rft_galeid=A597251804&rfr_iscdi=true