Engagement Estimation in Advertisement Videos with EEG
Engagement is a vital metric in the advertising industry and its automatic estimation has huge commercial implications. This work presents a basic and simple framework for engagement estimation using EEG (electroencephalography) data specifically recorded while watching advertisement videos, and is...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Balasubramanian, Sangeetha Gullapuram, Shruti Shriya Shukla, Abhinav |
description | Engagement is a vital metric in the advertising industry and its automatic estimation has huge commercial implications. This work presents a basic and simple framework for engagement estimation using EEG (electroencephalography) data specifically recorded while watching advertisement videos, and is meant to be a first step in a promising line of research. The system combines recent advances in low cost commercial Brain-Computer Interfaces with modeling user engagement in response to advertisement videos. We achieve an F1 score of nearly 0.7 for a binary classification of high and low values of self-reported engagement from multiple users. This study illustrates the possibility of seamless engagement measurement in the wild when interacting with media using a non invasive and readily available commercial EEG device. Performing engagement measurement via implicit tagging in this manner with a direct feedback from physiological signals, thus requiring no additional human effort, demonstrates a novel and potentially commercially relevant application in the area of advertisement video analysis. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2154455912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154455912</sourcerecordid><originalsourceid>FETCH-proquest_journals_21544559123</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc81LT0xPzU3NK1FwLS7JzE0syczPU8jMU3BMKUstKskshsiFZaak5hcrlGeWZCi4urrzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kaGpiYmpqaWhkTFxqgC48zUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154455912</pqid></control><display><type>article</type><title>Engagement Estimation in Advertisement Videos with EEG</title><source>Freely Accessible Journals</source><creator>Balasubramanian, Sangeetha ; Gullapuram, Shruti Shriya ; Shukla, Abhinav</creator><creatorcontrib>Balasubramanian, Sangeetha ; Gullapuram, Shruti Shriya ; Shukla, Abhinav</creatorcontrib><description>Engagement is a vital metric in the advertising industry and its automatic estimation has huge commercial implications. This work presents a basic and simple framework for engagement estimation using EEG (electroencephalography) data specifically recorded while watching advertisement videos, and is meant to be a first step in a promising line of research. The system combines recent advances in low cost commercial Brain-Computer Interfaces with modeling user engagement in response to advertisement videos. We achieve an F1 score of nearly 0.7 for a binary classification of high and low values of self-reported engagement from multiple users. This study illustrates the possibility of seamless engagement measurement in the wild when interacting with media using a non invasive and readily available commercial EEG device. Performing engagement measurement via implicit tagging in this manner with a direct feedback from physiological signals, thus requiring no additional human effort, demonstrates a novel and potentially commercially relevant application in the area of advertisement video analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Advertisements ; Electroencephalography ; Human-computer interface</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Balasubramanian, Sangeetha</creatorcontrib><creatorcontrib>Gullapuram, Shruti Shriya</creatorcontrib><creatorcontrib>Shukla, Abhinav</creatorcontrib><title>Engagement Estimation in Advertisement Videos with EEG</title><title>arXiv.org</title><description>Engagement is a vital metric in the advertising industry and its automatic estimation has huge commercial implications. This work presents a basic and simple framework for engagement estimation using EEG (electroencephalography) data specifically recorded while watching advertisement videos, and is meant to be a first step in a promising line of research. The system combines recent advances in low cost commercial Brain-Computer Interfaces with modeling user engagement in response to advertisement videos. We achieve an F1 score of nearly 0.7 for a binary classification of high and low values of self-reported engagement from multiple users. This study illustrates the possibility of seamless engagement measurement in the wild when interacting with media using a non invasive and readily available commercial EEG device. Performing engagement measurement via implicit tagging in this manner with a direct feedback from physiological signals, thus requiring no additional human effort, demonstrates a novel and potentially commercially relevant application in the area of advertisement video analysis.</description><subject>Advertisements</subject><subject>Electroencephalography</subject><subject>Human-computer interface</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc81LT0xPzU3NK1FwLS7JzE0syczPU8jMU3BMKUstKskshsiFZaak5hcrlGeWZCi4urrzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kaGpiYmpqaWhkTFxqgC48zUI</recordid><startdate>20181208</startdate><enddate>20181208</enddate><creator>Balasubramanian, Sangeetha</creator><creator>Gullapuram, Shruti Shriya</creator><creator>Shukla, Abhinav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181208</creationdate><title>Engagement Estimation in Advertisement Videos with EEG</title><author>Balasubramanian, Sangeetha ; Gullapuram, Shruti Shriya ; Shukla, Abhinav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21544559123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advertisements</topic><topic>Electroencephalography</topic><topic>Human-computer interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Sangeetha</creatorcontrib><creatorcontrib>Gullapuram, Shruti Shriya</creatorcontrib><creatorcontrib>Shukla, Abhinav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Sangeetha</au><au>Gullapuram, Shruti Shriya</au><au>Shukla, Abhinav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Engagement Estimation in Advertisement Videos with EEG</atitle><jtitle>arXiv.org</jtitle><date>2018-12-08</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Engagement is a vital metric in the advertising industry and its automatic estimation has huge commercial implications. This work presents a basic and simple framework for engagement estimation using EEG (electroencephalography) data specifically recorded while watching advertisement videos, and is meant to be a first step in a promising line of research. The system combines recent advances in low cost commercial Brain-Computer Interfaces with modeling user engagement in response to advertisement videos. We achieve an F1 score of nearly 0.7 for a binary classification of high and low values of self-reported engagement from multiple users. This study illustrates the possibility of seamless engagement measurement in the wild when interacting with media using a non invasive and readily available commercial EEG device. Performing engagement measurement via implicit tagging in this manner with a direct feedback from physiological signals, thus requiring no additional human effort, demonstrates a novel and potentially commercially relevant application in the area of advertisement video analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2154455912 |
source | Freely Accessible Journals |
subjects | Advertisements Electroencephalography Human-computer interface |
title | Engagement Estimation in Advertisement Videos with EEG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Engagement%20Estimation%20in%20Advertisement%20Videos%20with%20EEG&rft.jtitle=arXiv.org&rft.au=Balasubramanian,%20Sangeetha&rft.date=2018-12-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2154455912%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154455912&rft_id=info:pmid/&rfr_iscdi=true |