A priori bond‐valence and bond‐length calculations in rock‐forming minerals

Within the framework of the bond‐valence model, one may write equations describing the valence‐sum rule and the loop rule in terms of the constituent bond valences. These are collectively called the network equations, and can be solved for a specific bond topology to calculate its a priori bond vale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica Section B, Structural science, crystal engineering and materials Structural science, crystal engineering and materials, 2018-12, Vol.74 (6), p.470-482
Hauptverfasser: Gagné, Olivier Charles, Mercier, Patrick H. J., Hawthorne, Frank Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 6
container_start_page 470
container_title Acta crystallographica Section B, Structural science, crystal engineering and materials
container_volume 74
creator Gagné, Olivier Charles
Mercier, Patrick H. J.
Hawthorne, Frank Christopher
description Within the framework of the bond‐valence model, one may write equations describing the valence‐sum rule and the loop rule in terms of the constituent bond valences. These are collectively called the network equations, and can be solved for a specific bond topology to calculate its a priori bond valences. A priori bond valences are the ideal values of bond strengths intrinsic to a given bond topology that depend strictly on the formal valences of the ion at each site in the structure, and the bond‐topological characteristics of the structure (i.e. the ion connectivity). The a priori bond valences are calculated for selected rock‐forming minerals, beginning with a simple example (magnesiochromite, = 1.379 bits per atom) and progressing through a series of gradually more complex minerals (grossular, diopside, forsterite, fluoro‐phlogopite, phlogopite, fluoro‐tremolite, tremolite, albite) to finish with epidote (= 4.187 bits per atom). The effects of weak bonds (hydrogen bonds, long Na+—O2− bonds) on the calculation of a priori bond valences and bond lengths are examined. For the selected set of minerals, a priori and observed bond valences and bond lengths scatter closely about the 1:1 line with an average deviation of 0.04 v.u. and 0.048 Å and maximum deviations of 0.16 v.u. and 0.620 Å. The scatter of the corresponding a priori and observed bond lengths is strongly a function of the Lewis acidity of the constituent cation. For cations of high Lewis acidity, the range of differences between the a priori and observed bond lengths is small, whereas for cations of low Lewis acidity, the range of differences between the a priori and observed bond lengths is large. These calculations allow assessment of the strain in a crystal structure and provide a way to examine the effect of bond topology on variation in observed bond lengths for the same ion‐pair in different bond topologies. A priori bond valences and bond lengths are calculated for a series of rock‐forming minerals. Comparison of a priori and observed bond lengths allows structural strain to be assessed for those minerals.
doi_str_mv 10.1107/S2052520618010442
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154309350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154309350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3463-12bd00baec8f4ddad808e02ac5a28cc75d542fa1375a9c161576c7cbb6134e463</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJg0f4AbwHPqzP52N0e2-IXVETUg6eQTbJ16zap2VbpzZ_gb_SXmFIFwYOXecOb994wQ8gRwgkiFKd3DCSTDHIsAUEItkN6GyrbcLu_-n3S77oZACSbZDn2yO2QLmITYkOr4O3n-8erbp03jmpvf6hETJdP1OjWrFq9bILvaONpDOY5TesQ542f0lRc1G13SPbqBK7_jQfk4fzsfnyZTW4ursbDSaa5yHmGrLIAlXamrIW12pZQOmDaSM1KYwpppWC1Rl5IPTCYoyxyU5iqypELlxIOyPE2dxHDy8p1SzULq-jTSsVQCg4DLiGpcKsyMXRddLVK5851XCsEtXme-vO85BlsPW9N69b_G9TwccRG1xKB8y9uhXQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154309350</pqid></control><display><type>article</type><title>A priori bond‐valence and bond‐length calculations in rock‐forming minerals</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gagné, Olivier Charles ; Mercier, Patrick H. J. ; Hawthorne, Frank Christopher</creator><creatorcontrib>Gagné, Olivier Charles ; Mercier, Patrick H. J. ; Hawthorne, Frank Christopher</creatorcontrib><description>Within the framework of the bond‐valence model, one may write equations describing the valence‐sum rule and the loop rule in terms of the constituent bond valences. These are collectively called the network equations, and can be solved for a specific bond topology to calculate its a priori bond valences. A priori bond valences are the ideal values of bond strengths intrinsic to a given bond topology that depend strictly on the formal valences of the ion at each site in the structure, and the bond‐topological characteristics of the structure (i.e. the ion connectivity). The a priori bond valences are calculated for selected rock‐forming minerals, beginning with a simple example (magnesiochromite, = 1.379 bits per atom) and progressing through a series of gradually more complex minerals (grossular, diopside, forsterite, fluoro‐phlogopite, phlogopite, fluoro‐tremolite, tremolite, albite) to finish with epidote (= 4.187 bits per atom). The effects of weak bonds (hydrogen bonds, long Na+—O2− bonds) on the calculation of a priori bond valences and bond lengths are examined. For the selected set of minerals, a priori and observed bond valences and bond lengths scatter closely about the 1:1 line with an average deviation of 0.04 v.u. and 0.048 Å and maximum deviations of 0.16 v.u. and 0.620 Å. The scatter of the corresponding a priori and observed bond lengths is strongly a function of the Lewis acidity of the constituent cation. For cations of high Lewis acidity, the range of differences between the a priori and observed bond lengths is small, whereas for cations of low Lewis acidity, the range of differences between the a priori and observed bond lengths is large. These calculations allow assessment of the strain in a crystal structure and provide a way to examine the effect of bond topology on variation in observed bond lengths for the same ion‐pair in different bond topologies. A priori bond valences and bond lengths are calculated for a series of rock‐forming minerals. Comparison of a priori and observed bond lengths allows structural strain to be assessed for those minerals.</description><identifier>ISSN: 2052-5206</identifier><identifier>ISSN: 2052-5192</identifier><identifier>EISSN: 2052-5206</identifier><identifier>DOI: 10.1107/S2052520618010442</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Acidity ; bond length ; bond valence ; Bonding strength ; Calcium magnesium silicates ; Cations ; Constituents ; Crystal structure ; Diopside ; Forsterite ; Hydrogen bonds ; Lewis acidity ; Minerals ; network equations ; Rocks ; Scattering ; structural strain ; Topology ; Tremolite</subject><ispartof>Acta crystallographica Section B, Structural science, crystal engineering and materials, 2018-12, Vol.74 (6), p.470-482</ispartof><rights>International Union of Crystallography, 2018</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3463-12bd00baec8f4ddad808e02ac5a28cc75d542fa1375a9c161576c7cbb6134e463</citedby><orcidid>0000-0001-6405-9931 ; 0000-0002-7902-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2052520618010442$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2052520618010442$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gagné, Olivier Charles</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Hawthorne, Frank Christopher</creatorcontrib><title>A priori bond‐valence and bond‐length calculations in rock‐forming minerals</title><title>Acta crystallographica Section B, Structural science, crystal engineering and materials</title><description>Within the framework of the bond‐valence model, one may write equations describing the valence‐sum rule and the loop rule in terms of the constituent bond valences. These are collectively called the network equations, and can be solved for a specific bond topology to calculate its a priori bond valences. A priori bond valences are the ideal values of bond strengths intrinsic to a given bond topology that depend strictly on the formal valences of the ion at each site in the structure, and the bond‐topological characteristics of the structure (i.e. the ion connectivity). The a priori bond valences are calculated for selected rock‐forming minerals, beginning with a simple example (magnesiochromite, = 1.379 bits per atom) and progressing through a series of gradually more complex minerals (grossular, diopside, forsterite, fluoro‐phlogopite, phlogopite, fluoro‐tremolite, tremolite, albite) to finish with epidote (= 4.187 bits per atom). The effects of weak bonds (hydrogen bonds, long Na+—O2− bonds) on the calculation of a priori bond valences and bond lengths are examined. For the selected set of minerals, a priori and observed bond valences and bond lengths scatter closely about the 1:1 line with an average deviation of 0.04 v.u. and 0.048 Å and maximum deviations of 0.16 v.u. and 0.620 Å. The scatter of the corresponding a priori and observed bond lengths is strongly a function of the Lewis acidity of the constituent cation. For cations of high Lewis acidity, the range of differences between the a priori and observed bond lengths is small, whereas for cations of low Lewis acidity, the range of differences between the a priori and observed bond lengths is large. These calculations allow assessment of the strain in a crystal structure and provide a way to examine the effect of bond topology on variation in observed bond lengths for the same ion‐pair in different bond topologies. A priori bond valences and bond lengths are calculated for a series of rock‐forming minerals. Comparison of a priori and observed bond lengths allows structural strain to be assessed for those minerals.</description><subject>Acidity</subject><subject>bond length</subject><subject>bond valence</subject><subject>Bonding strength</subject><subject>Calcium magnesium silicates</subject><subject>Cations</subject><subject>Constituents</subject><subject>Crystal structure</subject><subject>Diopside</subject><subject>Forsterite</subject><subject>Hydrogen bonds</subject><subject>Lewis acidity</subject><subject>Minerals</subject><subject>network equations</subject><subject>Rocks</subject><subject>Scattering</subject><subject>structural strain</subject><subject>Topology</subject><subject>Tremolite</subject><issn>2052-5206</issn><issn>2052-5192</issn><issn>2052-5206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJg0f4AbwHPqzP52N0e2-IXVETUg6eQTbJ16zap2VbpzZ_gb_SXmFIFwYOXecOb994wQ8gRwgkiFKd3DCSTDHIsAUEItkN6GyrbcLu_-n3S77oZACSbZDn2yO2QLmITYkOr4O3n-8erbp03jmpvf6hETJdP1OjWrFq9bILvaONpDOY5TesQ542f0lRc1G13SPbqBK7_jQfk4fzsfnyZTW4ursbDSaa5yHmGrLIAlXamrIW12pZQOmDaSM1KYwpppWC1Rl5IPTCYoyxyU5iqypELlxIOyPE2dxHDy8p1SzULq-jTSsVQCg4DLiGpcKsyMXRddLVK5851XCsEtXme-vO85BlsPW9N69b_G9TwccRG1xKB8y9uhXQI</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Gagné, Olivier Charles</creator><creator>Mercier, Patrick H. J.</creator><creator>Hawthorne, Frank Christopher</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6405-9931</orcidid><orcidid>https://orcid.org/0000-0002-7902-8166</orcidid></search><sort><creationdate>201812</creationdate><title>A priori bond‐valence and bond‐length calculations in rock‐forming minerals</title><author>Gagné, Olivier Charles ; Mercier, Patrick H. J. ; Hawthorne, Frank Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3463-12bd00baec8f4ddad808e02ac5a28cc75d542fa1375a9c161576c7cbb6134e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acidity</topic><topic>bond length</topic><topic>bond valence</topic><topic>Bonding strength</topic><topic>Calcium magnesium silicates</topic><topic>Cations</topic><topic>Constituents</topic><topic>Crystal structure</topic><topic>Diopside</topic><topic>Forsterite</topic><topic>Hydrogen bonds</topic><topic>Lewis acidity</topic><topic>Minerals</topic><topic>network equations</topic><topic>Rocks</topic><topic>Scattering</topic><topic>structural strain</topic><topic>Topology</topic><topic>Tremolite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagné, Olivier Charles</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Hawthorne, Frank Christopher</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta crystallographica Section B, Structural science, crystal engineering and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagné, Olivier Charles</au><au>Mercier, Patrick H. J.</au><au>Hawthorne, Frank Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A priori bond‐valence and bond‐length calculations in rock‐forming minerals</atitle><jtitle>Acta crystallographica Section B, Structural science, crystal engineering and materials</jtitle><date>2018-12</date><risdate>2018</risdate><volume>74</volume><issue>6</issue><spage>470</spage><epage>482</epage><pages>470-482</pages><issn>2052-5206</issn><issn>2052-5192</issn><eissn>2052-5206</eissn><abstract>Within the framework of the bond‐valence model, one may write equations describing the valence‐sum rule and the loop rule in terms of the constituent bond valences. These are collectively called the network equations, and can be solved for a specific bond topology to calculate its a priori bond valences. A priori bond valences are the ideal values of bond strengths intrinsic to a given bond topology that depend strictly on the formal valences of the ion at each site in the structure, and the bond‐topological characteristics of the structure (i.e. the ion connectivity). The a priori bond valences are calculated for selected rock‐forming minerals, beginning with a simple example (magnesiochromite, = 1.379 bits per atom) and progressing through a series of gradually more complex minerals (grossular, diopside, forsterite, fluoro‐phlogopite, phlogopite, fluoro‐tremolite, tremolite, albite) to finish with epidote (= 4.187 bits per atom). The effects of weak bonds (hydrogen bonds, long Na+—O2− bonds) on the calculation of a priori bond valences and bond lengths are examined. For the selected set of minerals, a priori and observed bond valences and bond lengths scatter closely about the 1:1 line with an average deviation of 0.04 v.u. and 0.048 Å and maximum deviations of 0.16 v.u. and 0.620 Å. The scatter of the corresponding a priori and observed bond lengths is strongly a function of the Lewis acidity of the constituent cation. For cations of high Lewis acidity, the range of differences between the a priori and observed bond lengths is small, whereas for cations of low Lewis acidity, the range of differences between the a priori and observed bond lengths is large. These calculations allow assessment of the strain in a crystal structure and provide a way to examine the effect of bond topology on variation in observed bond lengths for the same ion‐pair in different bond topologies. A priori bond valences and bond lengths are calculated for a series of rock‐forming minerals. Comparison of a priori and observed bond lengths allows structural strain to be assessed for those minerals.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S2052520618010442</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6405-9931</orcidid><orcidid>https://orcid.org/0000-0002-7902-8166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-5206
ispartof Acta crystallographica Section B, Structural science, crystal engineering and materials, 2018-12, Vol.74 (6), p.470-482
issn 2052-5206
2052-5192
2052-5206
language eng
recordid cdi_proquest_journals_2154309350
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acidity
bond length
bond valence
Bonding strength
Calcium magnesium silicates
Cations
Constituents
Crystal structure
Diopside
Forsterite
Hydrogen bonds
Lewis acidity
Minerals
network equations
Rocks
Scattering
structural strain
Topology
Tremolite
title A priori bond‐valence and bond‐length calculations in rock‐forming minerals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20priori%20bond%E2%80%90valence%20and%20bond%E2%80%90length%20calculations%20in%20rock%E2%80%90forming%20minerals&rft.jtitle=Acta%20crystallographica%20Section%20B,%20Structural%20science,%20crystal%20engineering%20and%20materials&rft.au=Gagn%C3%A9,%20Olivier%20Charles&rft.date=2018-12&rft.volume=74&rft.issue=6&rft.spage=470&rft.epage=482&rft.pages=470-482&rft.issn=2052-5206&rft.eissn=2052-5206&rft_id=info:doi/10.1107/S2052520618010442&rft_dat=%3Cproquest_cross%3E2154309350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154309350&rft_id=info:pmid/&rfr_iscdi=true