Structural basis for ligand recognition of the human thromboxane A2 receptor

Stimulated by thromboxane A 2 , an endogenous arachidonic acid metabolite, the thromboxane A 2 receptor (TP) plays a pivotal role in cardiovascular homeostasis, and thus is considered as an important drug target for cardiovascular disease. Here, we report crystal structures of the human TP bound to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2019, Vol.15 (1), p.27-33
Hauptverfasser: Fan, Hengxin, Chen, Shuanghong, Yuan, Xiaojing, Han, Shuo, Zhang, Hui, Xia, Weiliang, Xu, Yechun, Zhao, Qiang, Wu, Beili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 27
container_title Nature chemical biology
container_volume 15
creator Fan, Hengxin
Chen, Shuanghong
Yuan, Xiaojing
Han, Shuo
Zhang, Hui
Xia, Weiliang
Xu, Yechun
Zhao, Qiang
Wu, Beili
description Stimulated by thromboxane A 2 , an endogenous arachidonic acid metabolite, the thromboxane A 2 receptor (TP) plays a pivotal role in cardiovascular homeostasis, and thus is considered as an important drug target for cardiovascular disease. Here, we report crystal structures of the human TP bound to two nonprostanoid antagonists, ramatroban and daltroban, at 2.5 Å and 3.0 Å resolution, respectively. The TP structures reveal a ligand-binding pocket capped by two layers of extracellular loops that are stabilized by two disulfide bonds, limiting ligand access from the extracellular milieu. These structures provide details of interactions between the receptor and antagonists, which help to integrate previous mutagenesis and SAR data. Molecular docking of prostanoid-like ligands, combined with mutagenesis, ligand-binding and functional assays, suggests a prostanoid binding mode that may also be adopted by other prostanoid receptors. These insights into TP deepen our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. Structures of the human thromboxane A 2 receptor, a member of the prostanoid family of G-protein-coupled receptors, in complex with two synthetic antagonists reveal that ligands access the ligand-binding pocket from the plane of the lipid bilayer.
doi_str_mv 10.1038/s41589-018-0170-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2154246767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154246767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2609-6d90ccdf49d772f9e971b0afa70b2771279c27b78cee3f2654243f9fcbf3435f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19V8NWmWw-AXDLhQ1yFNk06HNhmTFvTfm1LRlYvHe4tz74MDwDVGtxjR6i4xXFayQLjKI1AhT8AKlyUpGOPy9Pcu0Tm4SOmAEOUcVyuwex3jZMYp6h7WOnUJuhBh37XaNzBaE1rfjV3wMDg47i3cT4P2-YphqMOn9hZuyMzZ4xjiJThzuk_26mevwfvD_dv2qdi9PD5vN7vCEI5kwRuJjGkck40QxEkrBa6RdlqgmgiBiZCGiFpUxlrqCC8ZYdRJZ2pHGS0dXYObpfcYw8dk06gOYYo-v1QEzzQXXGQKL5SJIaVonTrGbtDxS2GkZmlqkaayNDVLUzJnyJJJmfWtjX_N_4e-AQvNbx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154246767</pqid></control><display><type>article</type><title>Structural basis for ligand recognition of the human thromboxane A2 receptor</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Fan, Hengxin ; Chen, Shuanghong ; Yuan, Xiaojing ; Han, Shuo ; Zhang, Hui ; Xia, Weiliang ; Xu, Yechun ; Zhao, Qiang ; Wu, Beili</creator><creatorcontrib>Fan, Hengxin ; Chen, Shuanghong ; Yuan, Xiaojing ; Han, Shuo ; Zhang, Hui ; Xia, Weiliang ; Xu, Yechun ; Zhao, Qiang ; Wu, Beili</creatorcontrib><description>Stimulated by thromboxane A 2 , an endogenous arachidonic acid metabolite, the thromboxane A 2 receptor (TP) plays a pivotal role in cardiovascular homeostasis, and thus is considered as an important drug target for cardiovascular disease. Here, we report crystal structures of the human TP bound to two nonprostanoid antagonists, ramatroban and daltroban, at 2.5 Å and 3.0 Å resolution, respectively. The TP structures reveal a ligand-binding pocket capped by two layers of extracellular loops that are stabilized by two disulfide bonds, limiting ligand access from the extracellular milieu. These structures provide details of interactions between the receptor and antagonists, which help to integrate previous mutagenesis and SAR data. Molecular docking of prostanoid-like ligands, combined with mutagenesis, ligand-binding and functional assays, suggests a prostanoid binding mode that may also be adopted by other prostanoid receptors. These insights into TP deepen our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. Structures of the human thromboxane A 2 receptor, a member of the prostanoid family of G-protein-coupled receptors, in complex with two synthetic antagonists reveal that ligands access the ligand-binding pocket from the plane of the lipid bilayer.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-018-0170-9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/1266 ; 631/92/612/194 ; Arachidonic acid ; Binding ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cardiovascular diseases ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Disulfide bonds ; Homeostasis ; Ligands ; Metabolites ; Molecular docking ; Mutagenesis ; Prostaglandin receptors ; Receptors ; Recognition ; Selectivity ; Thromboxane A2</subject><ispartof>Nature chemical biology, 2019, Vol.15 (1), p.27-33</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2609-6d90ccdf49d772f9e971b0afa70b2771279c27b78cee3f2654243f9fcbf3435f3</citedby><cites>FETCH-LOGICAL-c2609-6d90ccdf49d772f9e971b0afa70b2771279c27b78cee3f2654243f9fcbf3435f3</cites><orcidid>0000-0003-1705-5190 ; 0000-0002-1936-0909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-018-0170-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-018-0170-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Fan, Hengxin</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Yuan, Xiaojing</creatorcontrib><creatorcontrib>Han, Shuo</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Xia, Weiliang</creatorcontrib><creatorcontrib>Xu, Yechun</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Wu, Beili</creatorcontrib><title>Structural basis for ligand recognition of the human thromboxane A2 receptor</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><description>Stimulated by thromboxane A 2 , an endogenous arachidonic acid metabolite, the thromboxane A 2 receptor (TP) plays a pivotal role in cardiovascular homeostasis, and thus is considered as an important drug target for cardiovascular disease. Here, we report crystal structures of the human TP bound to two nonprostanoid antagonists, ramatroban and daltroban, at 2.5 Å and 3.0 Å resolution, respectively. The TP structures reveal a ligand-binding pocket capped by two layers of extracellular loops that are stabilized by two disulfide bonds, limiting ligand access from the extracellular milieu. These structures provide details of interactions between the receptor and antagonists, which help to integrate previous mutagenesis and SAR data. Molecular docking of prostanoid-like ligands, combined with mutagenesis, ligand-binding and functional assays, suggests a prostanoid binding mode that may also be adopted by other prostanoid receptors. These insights into TP deepen our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. Structures of the human thromboxane A 2 receptor, a member of the prostanoid family of G-protein-coupled receptors, in complex with two synthetic antagonists reveal that ligands access the ligand-binding pocket from the plane of the lipid bilayer.</description><subject>631/535/1266</subject><subject>631/92/612/194</subject><subject>Arachidonic acid</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cardiovascular diseases</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Disulfide bonds</subject><subject>Homeostasis</subject><subject>Ligands</subject><subject>Metabolites</subject><subject>Molecular docking</subject><subject>Mutagenesis</subject><subject>Prostaglandin receptors</subject><subject>Receptors</subject><subject>Recognition</subject><subject>Selectivity</subject><subject>Thromboxane A2</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcB19V8NWmWw-AXDLhQ1yFNk06HNhmTFvTfm1LRlYvHe4tz74MDwDVGtxjR6i4xXFayQLjKI1AhT8AKlyUpGOPy9Pcu0Tm4SOmAEOUcVyuwex3jZMYp6h7WOnUJuhBh37XaNzBaE1rfjV3wMDg47i3cT4P2-YphqMOn9hZuyMzZ4xjiJThzuk_26mevwfvD_dv2qdi9PD5vN7vCEI5kwRuJjGkck40QxEkrBa6RdlqgmgiBiZCGiFpUxlrqCC8ZYdRJZ2pHGS0dXYObpfcYw8dk06gOYYo-v1QEzzQXXGQKL5SJIaVonTrGbtDxS2GkZmlqkaayNDVLUzJnyJJJmfWtjX_N_4e-AQvNbx0</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Fan, Hengxin</creator><creator>Chen, Shuanghong</creator><creator>Yuan, Xiaojing</creator><creator>Han, Shuo</creator><creator>Zhang, Hui</creator><creator>Xia, Weiliang</creator><creator>Xu, Yechun</creator><creator>Zhao, Qiang</creator><creator>Wu, Beili</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-1705-5190</orcidid><orcidid>https://orcid.org/0000-0002-1936-0909</orcidid></search><sort><creationdate>2019</creationdate><title>Structural basis for ligand recognition of the human thromboxane A2 receptor</title><author>Fan, Hengxin ; Chen, Shuanghong ; Yuan, Xiaojing ; Han, Shuo ; Zhang, Hui ; Xia, Weiliang ; Xu, Yechun ; Zhao, Qiang ; Wu, Beili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2609-6d90ccdf49d772f9e971b0afa70b2771279c27b78cee3f2654243f9fcbf3435f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/535/1266</topic><topic>631/92/612/194</topic><topic>Arachidonic acid</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cardiovascular diseases</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Disulfide bonds</topic><topic>Homeostasis</topic><topic>Ligands</topic><topic>Metabolites</topic><topic>Molecular docking</topic><topic>Mutagenesis</topic><topic>Prostaglandin receptors</topic><topic>Receptors</topic><topic>Recognition</topic><topic>Selectivity</topic><topic>Thromboxane A2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Hengxin</creatorcontrib><creatorcontrib>Chen, Shuanghong</creatorcontrib><creatorcontrib>Yuan, Xiaojing</creatorcontrib><creatorcontrib>Han, Shuo</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Xia, Weiliang</creatorcontrib><creatorcontrib>Xu, Yechun</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Wu, Beili</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Hengxin</au><au>Chen, Shuanghong</au><au>Yuan, Xiaojing</au><au>Han, Shuo</au><au>Zhang, Hui</au><au>Xia, Weiliang</au><au>Xu, Yechun</au><au>Zhao, Qiang</au><au>Wu, Beili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for ligand recognition of the human thromboxane A2 receptor</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><date>2019</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>27</spage><epage>33</epage><pages>27-33</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Stimulated by thromboxane A 2 , an endogenous arachidonic acid metabolite, the thromboxane A 2 receptor (TP) plays a pivotal role in cardiovascular homeostasis, and thus is considered as an important drug target for cardiovascular disease. Here, we report crystal structures of the human TP bound to two nonprostanoid antagonists, ramatroban and daltroban, at 2.5 Å and 3.0 Å resolution, respectively. The TP structures reveal a ligand-binding pocket capped by two layers of extracellular loops that are stabilized by two disulfide bonds, limiting ligand access from the extracellular milieu. These structures provide details of interactions between the receptor and antagonists, which help to integrate previous mutagenesis and SAR data. Molecular docking of prostanoid-like ligands, combined with mutagenesis, ligand-binding and functional assays, suggests a prostanoid binding mode that may also be adopted by other prostanoid receptors. These insights into TP deepen our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. Structures of the human thromboxane A 2 receptor, a member of the prostanoid family of G-protein-coupled receptors, in complex with two synthetic antagonists reveal that ligands access the ligand-binding pocket from the plane of the lipid bilayer.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><doi>10.1038/s41589-018-0170-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1705-5190</orcidid><orcidid>https://orcid.org/0000-0002-1936-0909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2019, Vol.15 (1), p.27-33
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_journals_2154246767
source SpringerLink Journals; Nature Journals Online
subjects 631/535/1266
631/92/612/194
Arachidonic acid
Binding
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cardiovascular diseases
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Crystal structure
Disulfide bonds
Homeostasis
Ligands
Metabolites
Molecular docking
Mutagenesis
Prostaglandin receptors
Receptors
Recognition
Selectivity
Thromboxane A2
title Structural basis for ligand recognition of the human thromboxane A2 receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20ligand%20recognition%20of%20the%20human%20thromboxane%20A2%20receptor&rft.jtitle=Nature%20chemical%20biology&rft.au=Fan,%20Hengxin&rft.date=2019&rft.volume=15&rft.issue=1&rft.spage=27&rft.epage=33&rft.pages=27-33&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-018-0170-9&rft_dat=%3Cproquest_cross%3E2154246767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154246767&rft_id=info:pmid/&rfr_iscdi=true