Distributed Observer and Controller Design for Spatially Interconnected Systems

This paper tackles networked distributed observer and controller design problem over directed graph topology for spatially interconnected systems. Traditional centralized design methods suffer from a lack of adaptability to graph variations incurred by network reconfiguration, communication failures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2019-01, Vol.27 (1), p.1-13
Hauptverfasser: Zhang, Xueji, Hengster-Movric, Kristian, Sebek, Michael, Desmet, Wim, Faria, Cassio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume 27
creator Zhang, Xueji
Hengster-Movric, Kristian
Sebek, Michael
Desmet, Wim
Faria, Cassio
description This paper tackles networked distributed observer and controller design problem over directed graph topology for spatially interconnected systems. Traditional centralized design methods suffer from a lack of adaptability to graph variations incurred by network reconfiguration, communication failures, and redundant sensors integration. In this paper, to handle the foregoing limitations imposed by centralized design, state observers are designed in a distributed manner facilitated by pinning control precepts. On the one hand, this novel approach adds fault tolerance with respect to communication link failures. On the other hand, the proposed approach brings flexibility of integrating additional sensors into the network. In addition, this approach affords a reduction of computational cost. A sufficient condition to guarantee stability of the closed-loop system is derived. The controllers, though in the end implemented in a distributed way, are designed in a centralized framework, where linear-quadratic-regulator theory is adopted to handle the fact that separation principle fails to hold in the networked observer and controller design. Numerical simulation results of a piezoelectric actuated smart flexible system are presented, and the effectiveness of the proposed design is thereby verified.
doi_str_mv 10.1109/TCST.2017.2769019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2154058106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8118135</ieee_id><sourcerecordid>2154058106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-70296b4895748d3529255c975398874ffb195a517fd50a8861ba35b227d8fdb43</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYF23HzB2CeyczrIjfxxHuo9CoYd2Z-MkzkhJk852Bv33S2jZSRK8j4QeQh6BLgCoftnl292CUZALJoWmoK_IDBBVSpXA67GngqcCubgldyHsKYUMmZyRzbIJ0TfFEF2VbIrg_K_zie2qJO-76Pu2HcelC813l9S9T7ZHGxvbtqdk1UXny77rXDmx21OI7hDuyU1t2-AeLnVOvt7fdvlnut58rPLXdVpyLmIqKdOiyJRGmamKI9MMsdQSuVZKZnVdgEaLIOsKqVVKQGE5FozJStVVkfE5eT7vPfr-Z3Ahmn0_-G48aRhgRlFNH88JnFOl70PwrjZH3xysPxmgZvJmJm9m8mYu3kbm6cw0zrn_vAJQwJH_AZstaKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154058106</pqid></control><display><type>article</type><title>Distributed Observer and Controller Design for Spatially Interconnected Systems</title><source>IEEE Xplore</source><creator>Zhang, Xueji ; Hengster-Movric, Kristian ; Sebek, Michael ; Desmet, Wim ; Faria, Cassio</creator><creatorcontrib>Zhang, Xueji ; Hengster-Movric, Kristian ; Sebek, Michael ; Desmet, Wim ; Faria, Cassio</creatorcontrib><description>This paper tackles networked distributed observer and controller design problem over directed graph topology for spatially interconnected systems. Traditional centralized design methods suffer from a lack of adaptability to graph variations incurred by network reconfiguration, communication failures, and redundant sensors integration. In this paper, to handle the foregoing limitations imposed by centralized design, state observers are designed in a distributed manner facilitated by pinning control precepts. On the one hand, this novel approach adds fault tolerance with respect to communication link failures. On the other hand, the proposed approach brings flexibility of integrating additional sensors into the network. In addition, this approach affords a reduction of computational cost. A sufficient condition to guarantee stability of the closed-loop system is derived. The controllers, though in the end implemented in a distributed way, are designed in a centralized framework, where linear-quadratic-regulator theory is adopted to handle the fact that separation principle fails to hold in the networked observer and controller design. Numerical simulation results of a piezoelectric actuated smart flexible system are presented, and the effectiveness of the proposed design is thereby verified.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2769019</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Computer simulation ; Consensus ; Control stability ; Control systems design ; Controllers ; Design ; Design engineering ; distributed control ; Failure ; Fault tolerance ; flexible structures ; Graph theory ; large-scale systems ; networked control ; Observability ; Observers ; Piezoelectricity ; pinning control ; Reconfiguration ; Sensors ; State observers ; Topology ; Vegetation ; vibration damping ; Vibrations</subject><ispartof>IEEE transactions on control systems technology, 2019-01, Vol.27 (1), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-70296b4895748d3529255c975398874ffb195a517fd50a8861ba35b227d8fdb43</citedby><cites>FETCH-LOGICAL-c336t-70296b4895748d3529255c975398874ffb195a517fd50a8861ba35b227d8fdb43</cites><orcidid>0000-0003-2532-3466 ; 0000-0003-0927-2988 ; 0000-0002-4397-7474 ; 0000-0002-8802-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8118135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8118135$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xueji</creatorcontrib><creatorcontrib>Hengster-Movric, Kristian</creatorcontrib><creatorcontrib>Sebek, Michael</creatorcontrib><creatorcontrib>Desmet, Wim</creatorcontrib><creatorcontrib>Faria, Cassio</creatorcontrib><title>Distributed Observer and Controller Design for Spatially Interconnected Systems</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper tackles networked distributed observer and controller design problem over directed graph topology for spatially interconnected systems. Traditional centralized design methods suffer from a lack of adaptability to graph variations incurred by network reconfiguration, communication failures, and redundant sensors integration. In this paper, to handle the foregoing limitations imposed by centralized design, state observers are designed in a distributed manner facilitated by pinning control precepts. On the one hand, this novel approach adds fault tolerance with respect to communication link failures. On the other hand, the proposed approach brings flexibility of integrating additional sensors into the network. In addition, this approach affords a reduction of computational cost. A sufficient condition to guarantee stability of the closed-loop system is derived. The controllers, though in the end implemented in a distributed way, are designed in a centralized framework, where linear-quadratic-regulator theory is adopted to handle the fact that separation principle fails to hold in the networked observer and controller design. Numerical simulation results of a piezoelectric actuated smart flexible system are presented, and the effectiveness of the proposed design is thereby verified.</description><subject>Actuators</subject><subject>Computer simulation</subject><subject>Consensus</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design</subject><subject>Design engineering</subject><subject>distributed control</subject><subject>Failure</subject><subject>Fault tolerance</subject><subject>flexible structures</subject><subject>Graph theory</subject><subject>large-scale systems</subject><subject>networked control</subject><subject>Observability</subject><subject>Observers</subject><subject>Piezoelectricity</subject><subject>pinning control</subject><subject>Reconfiguration</subject><subject>Sensors</subject><subject>State observers</subject><subject>Topology</subject><subject>Vegetation</subject><subject>vibration damping</subject><subject>Vibrations</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwzAMhs3YYF23HzB2CeyczrIjfxxHuo9CoYd2Z-MkzkhJk852Bv33S2jZSRK8j4QeQh6BLgCoftnl292CUZALJoWmoK_IDBBVSpXA67GngqcCubgldyHsKYUMmZyRzbIJ0TfFEF2VbIrg_K_zie2qJO-76Pu2HcelC813l9S9T7ZHGxvbtqdk1UXny77rXDmx21OI7hDuyU1t2-AeLnVOvt7fdvlnut58rPLXdVpyLmIqKdOiyJRGmamKI9MMsdQSuVZKZnVdgEaLIOsKqVVKQGE5FozJStVVkfE5eT7vPfr-Z3Ahmn0_-G48aRhgRlFNH88JnFOl70PwrjZH3xysPxmgZvJmJm9m8mYu3kbm6cw0zrn_vAJQwJH_AZstaKY</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhang, Xueji</creator><creator>Hengster-Movric, Kristian</creator><creator>Sebek, Michael</creator><creator>Desmet, Wim</creator><creator>Faria, Cassio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2532-3466</orcidid><orcidid>https://orcid.org/0000-0003-0927-2988</orcidid><orcidid>https://orcid.org/0000-0002-4397-7474</orcidid><orcidid>https://orcid.org/0000-0002-8802-7317</orcidid></search><sort><creationdate>201901</creationdate><title>Distributed Observer and Controller Design for Spatially Interconnected Systems</title><author>Zhang, Xueji ; Hengster-Movric, Kristian ; Sebek, Michael ; Desmet, Wim ; Faria, Cassio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-70296b4895748d3529255c975398874ffb195a517fd50a8861ba35b227d8fdb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Computer simulation</topic><topic>Consensus</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design</topic><topic>Design engineering</topic><topic>distributed control</topic><topic>Failure</topic><topic>Fault tolerance</topic><topic>flexible structures</topic><topic>Graph theory</topic><topic>large-scale systems</topic><topic>networked control</topic><topic>Observability</topic><topic>Observers</topic><topic>Piezoelectricity</topic><topic>pinning control</topic><topic>Reconfiguration</topic><topic>Sensors</topic><topic>State observers</topic><topic>Topology</topic><topic>Vegetation</topic><topic>vibration damping</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xueji</creatorcontrib><creatorcontrib>Hengster-Movric, Kristian</creatorcontrib><creatorcontrib>Sebek, Michael</creatorcontrib><creatorcontrib>Desmet, Wim</creatorcontrib><creatorcontrib>Faria, Cassio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xueji</au><au>Hengster-Movric, Kristian</au><au>Sebek, Michael</au><au>Desmet, Wim</au><au>Faria, Cassio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Observer and Controller Design for Spatially Interconnected Systems</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2019-01</date><risdate>2019</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper tackles networked distributed observer and controller design problem over directed graph topology for spatially interconnected systems. Traditional centralized design methods suffer from a lack of adaptability to graph variations incurred by network reconfiguration, communication failures, and redundant sensors integration. In this paper, to handle the foregoing limitations imposed by centralized design, state observers are designed in a distributed manner facilitated by pinning control precepts. On the one hand, this novel approach adds fault tolerance with respect to communication link failures. On the other hand, the proposed approach brings flexibility of integrating additional sensors into the network. In addition, this approach affords a reduction of computational cost. A sufficient condition to guarantee stability of the closed-loop system is derived. The controllers, though in the end implemented in a distributed way, are designed in a centralized framework, where linear-quadratic-regulator theory is adopted to handle the fact that separation principle fails to hold in the networked observer and controller design. Numerical simulation results of a piezoelectric actuated smart flexible system are presented, and the effectiveness of the proposed design is thereby verified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2769019</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2532-3466</orcidid><orcidid>https://orcid.org/0000-0003-0927-2988</orcidid><orcidid>https://orcid.org/0000-0002-4397-7474</orcidid><orcidid>https://orcid.org/0000-0002-8802-7317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2019-01, Vol.27 (1), p.1-13
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_2154058106
source IEEE Xplore
subjects Actuators
Computer simulation
Consensus
Control stability
Control systems design
Controllers
Design
Design engineering
distributed control
Failure
Fault tolerance
flexible structures
Graph theory
large-scale systems
networked control
Observability
Observers
Piezoelectricity
pinning control
Reconfiguration
Sensors
State observers
Topology
Vegetation
vibration damping
Vibrations
title Distributed Observer and Controller Design for Spatially Interconnected Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Observer%20and%20Controller%20Design%20for%20Spatially%20Interconnected%20Systems&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Zhang,%20Xueji&rft.date=2019-01&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2769019&rft_dat=%3Cproquest_RIE%3E2154058106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154058106&rft_id=info:pmid/&rft_ieee_id=8118135&rfr_iscdi=true