Estimating dominant runoff modes across the conterminous United States

Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2018-12, Vol.32 (26), p.3881-3890
Hauptverfasser: Buchanan, Brian, Auerbach, Daniel A., Knighton, James, Evensen, Darrick, Fuka, Daniel R., Easton, Zachary, Wieczorek, Michael, Archibald, Josephine A., McWilliams, Brandon, Walter, Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3890
container_issue 26
container_start_page 3881
container_title Hydrological processes
container_volume 32
creator Buchanan, Brian
Auerbach, Daniel A.
Knighton, James
Evensen, Darrick
Fuka, Daniel R.
Easton, Zachary
Wieczorek, Michael
Archibald, Josephine A.
McWilliams, Brandon
Walter, Todd
description Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training and backgrounds. To address this demand within the contiguous United States (CONUS), we characterized and mapped the predominance of two primary runoff generating processes: infiltration‐excess and saturation‐excess runoff (IE vs. SE, respectively). Specifically, we constructed a gap‐filled grid of surficial saturated hydraulic conductivity using the Soil Survey Geographic and State Soil Geographic soils databases. We then compared surficial saturated hydraulic conductivity values with 1‐hr rainfall‐frequency estimates across a range of return intervals derived from CONUS‐scale random forest models. This assessment of the prevalence of IE versus SE runoff also incorporated a simple uncertainty analysis, as well as a case study of how the approach could be used to evaluate future alterations in runoff processes resulting from climate change. We found a low likelihood of IE runoff on undisturbed soils over much of CONUS for 1‐hr storms with return intervals
doi_str_mv 10.1002/hyp.13296
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153984426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2153984426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-14ea11475387d7af6634f511726e5fa238faa3e6326f2fab2218ed06ec98261e3</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDS0wMac924jgjqlqKVAkk6MBkmeRMU7VxsR2h_ntMw8p0y3NfLyG3DCYMgE83x8OECV7JMzJiUFUZA1WckxEoVWQSVHlJrkLYAkAOCkZkMQ-x3ZvYdp-0cfu2M12kvu-ctXTvGgzU1N6FQOMGae26iD4h1we67tqIDX2NJmK4JhfW7ALe_NUxWS_mb7Nltnp-fJo9rLJaCC4zlqNhLC8LocqmNFZKkduCsZJLLKzhQlljBMpkLbfmg3OmsAGJdaW4ZCjG5G6Ye_Duq8cQ9db1vksrNWeFqFSec5nU_aBOp3u0-uDTk_6oGejfmHSKSZ9iSnY62O92h8f_oV6-vwwdP8vWaSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153984426</pqid></control><display><type>article</type><title>Estimating dominant runoff modes across the conterminous United States</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Buchanan, Brian ; Auerbach, Daniel A. ; Knighton, James ; Evensen, Darrick ; Fuka, Daniel R. ; Easton, Zachary ; Wieczorek, Michael ; Archibald, Josephine A. ; McWilliams, Brandon ; Walter, Todd</creator><creatorcontrib>Buchanan, Brian ; Auerbach, Daniel A. ; Knighton, James ; Evensen, Darrick ; Fuka, Daniel R. ; Easton, Zachary ; Wieczorek, Michael ; Archibald, Josephine A. ; McWilliams, Brandon ; Walter, Todd</creatorcontrib><description>Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training and backgrounds. To address this demand within the contiguous United States (CONUS), we characterized and mapped the predominance of two primary runoff generating processes: infiltration‐excess and saturation‐excess runoff (IE vs. SE, respectively). Specifically, we constructed a gap‐filled grid of surficial saturated hydraulic conductivity using the Soil Survey Geographic and State Soil Geographic soils databases. We then compared surficial saturated hydraulic conductivity values with 1‐hr rainfall‐frequency estimates across a range of return intervals derived from CONUS‐scale random forest models. This assessment of the prevalence of IE versus SE runoff also incorporated a simple uncertainty analysis, as well as a case study of how the approach could be used to evaluate future alterations in runoff processes resulting from climate change. We found a low likelihood of IE runoff on undisturbed soils over much of CONUS for 1‐hr storms with return intervals &lt;5 years. Conversely, IE runoff is most likely in the Central United States (i.e., Texas, Louisiana, Kansas, Missouri, Iowa, Nebraska, and Western South Dakota), and the relative predominance of runoff types is highly sensitive to the accuracy of the estimated soil properties. Leveraging publicly available data sets and reproducible workflows, our approach offers greater understanding of predominant runoff generating processes over a continental extent and expands the technical resources available to environmental planners, regulators, and modellers.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.13296</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Case studies ; Climate change ; contiguous United States ; Frequency estimation ; Hydraulic conductivity ; Infiltration ; infiltration excess runoff ; Intervals ; Natural resources ; precipitation frequency analysis ; Rain ; Rainfall ; Rainfall frequency ; random forest ; Regulators ; Runoff ; runoff generation ; Saturation ; saturation excess runoff ; Soil ; Soil properties ; Storms ; Surveying ; Training ; Uncertainty analysis</subject><ispartof>Hydrological processes, 2018-12, Vol.32 (26), p.3881-3890</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-14ea11475387d7af6634f511726e5fa238faa3e6326f2fab2218ed06ec98261e3</citedby><cites>FETCH-LOGICAL-c3326-14ea11475387d7af6634f511726e5fa238faa3e6326f2fab2218ed06ec98261e3</cites><orcidid>0000-0002-3655-5206 ; 0000-0003-0641-4450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.13296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.13296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Buchanan, Brian</creatorcontrib><creatorcontrib>Auerbach, Daniel A.</creatorcontrib><creatorcontrib>Knighton, James</creatorcontrib><creatorcontrib>Evensen, Darrick</creatorcontrib><creatorcontrib>Fuka, Daniel R.</creatorcontrib><creatorcontrib>Easton, Zachary</creatorcontrib><creatorcontrib>Wieczorek, Michael</creatorcontrib><creatorcontrib>Archibald, Josephine A.</creatorcontrib><creatorcontrib>McWilliams, Brandon</creatorcontrib><creatorcontrib>Walter, Todd</creatorcontrib><title>Estimating dominant runoff modes across the conterminous United States</title><title>Hydrological processes</title><description>Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training and backgrounds. To address this demand within the contiguous United States (CONUS), we characterized and mapped the predominance of two primary runoff generating processes: infiltration‐excess and saturation‐excess runoff (IE vs. SE, respectively). Specifically, we constructed a gap‐filled grid of surficial saturated hydraulic conductivity using the Soil Survey Geographic and State Soil Geographic soils databases. We then compared surficial saturated hydraulic conductivity values with 1‐hr rainfall‐frequency estimates across a range of return intervals derived from CONUS‐scale random forest models. This assessment of the prevalence of IE versus SE runoff also incorporated a simple uncertainty analysis, as well as a case study of how the approach could be used to evaluate future alterations in runoff processes resulting from climate change. We found a low likelihood of IE runoff on undisturbed soils over much of CONUS for 1‐hr storms with return intervals &lt;5 years. Conversely, IE runoff is most likely in the Central United States (i.e., Texas, Louisiana, Kansas, Missouri, Iowa, Nebraska, and Western South Dakota), and the relative predominance of runoff types is highly sensitive to the accuracy of the estimated soil properties. Leveraging publicly available data sets and reproducible workflows, our approach offers greater understanding of predominant runoff generating processes over a continental extent and expands the technical resources available to environmental planners, regulators, and modellers.</description><subject>Case studies</subject><subject>Climate change</subject><subject>contiguous United States</subject><subject>Frequency estimation</subject><subject>Hydraulic conductivity</subject><subject>Infiltration</subject><subject>infiltration excess runoff</subject><subject>Intervals</subject><subject>Natural resources</subject><subject>precipitation frequency analysis</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall frequency</subject><subject>random forest</subject><subject>Regulators</subject><subject>Runoff</subject><subject>runoff generation</subject><subject>Saturation</subject><subject>saturation excess runoff</subject><subject>Soil</subject><subject>Soil properties</subject><subject>Storms</subject><subject>Surveying</subject><subject>Training</subject><subject>Uncertainty analysis</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPwDS0wMac924jgjqlqKVAkk6MBkmeRMU7VxsR2h_ntMw8p0y3NfLyG3DCYMgE83x8OECV7JMzJiUFUZA1WckxEoVWQSVHlJrkLYAkAOCkZkMQ-x3ZvYdp-0cfu2M12kvu-ctXTvGgzU1N6FQOMGae26iD4h1we67tqIDX2NJmK4JhfW7ALe_NUxWS_mb7Nltnp-fJo9rLJaCC4zlqNhLC8LocqmNFZKkduCsZJLLKzhQlljBMpkLbfmg3OmsAGJdaW4ZCjG5G6Ye_Duq8cQ9db1vksrNWeFqFSec5nU_aBOp3u0-uDTk_6oGejfmHSKSZ9iSnY62O92h8f_oV6-vwwdP8vWaSA</recordid><startdate>20181230</startdate><enddate>20181230</enddate><creator>Buchanan, Brian</creator><creator>Auerbach, Daniel A.</creator><creator>Knighton, James</creator><creator>Evensen, Darrick</creator><creator>Fuka, Daniel R.</creator><creator>Easton, Zachary</creator><creator>Wieczorek, Michael</creator><creator>Archibald, Josephine A.</creator><creator>McWilliams, Brandon</creator><creator>Walter, Todd</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3655-5206</orcidid><orcidid>https://orcid.org/0000-0003-0641-4450</orcidid></search><sort><creationdate>20181230</creationdate><title>Estimating dominant runoff modes across the conterminous United States</title><author>Buchanan, Brian ; Auerbach, Daniel A. ; Knighton, James ; Evensen, Darrick ; Fuka, Daniel R. ; Easton, Zachary ; Wieczorek, Michael ; Archibald, Josephine A. ; McWilliams, Brandon ; Walter, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-14ea11475387d7af6634f511726e5fa238faa3e6326f2fab2218ed06ec98261e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Case studies</topic><topic>Climate change</topic><topic>contiguous United States</topic><topic>Frequency estimation</topic><topic>Hydraulic conductivity</topic><topic>Infiltration</topic><topic>infiltration excess runoff</topic><topic>Intervals</topic><topic>Natural resources</topic><topic>precipitation frequency analysis</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall frequency</topic><topic>random forest</topic><topic>Regulators</topic><topic>Runoff</topic><topic>runoff generation</topic><topic>Saturation</topic><topic>saturation excess runoff</topic><topic>Soil</topic><topic>Soil properties</topic><topic>Storms</topic><topic>Surveying</topic><topic>Training</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchanan, Brian</creatorcontrib><creatorcontrib>Auerbach, Daniel A.</creatorcontrib><creatorcontrib>Knighton, James</creatorcontrib><creatorcontrib>Evensen, Darrick</creatorcontrib><creatorcontrib>Fuka, Daniel R.</creatorcontrib><creatorcontrib>Easton, Zachary</creatorcontrib><creatorcontrib>Wieczorek, Michael</creatorcontrib><creatorcontrib>Archibald, Josephine A.</creatorcontrib><creatorcontrib>McWilliams, Brandon</creatorcontrib><creatorcontrib>Walter, Todd</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchanan, Brian</au><au>Auerbach, Daniel A.</au><au>Knighton, James</au><au>Evensen, Darrick</au><au>Fuka, Daniel R.</au><au>Easton, Zachary</au><au>Wieczorek, Michael</au><au>Archibald, Josephine A.</au><au>McWilliams, Brandon</au><au>Walter, Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating dominant runoff modes across the conterminous United States</atitle><jtitle>Hydrological processes</jtitle><date>2018-12-30</date><risdate>2018</risdate><volume>32</volume><issue>26</issue><spage>3881</spage><epage>3890</epage><pages>3881-3890</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training and backgrounds. To address this demand within the contiguous United States (CONUS), we characterized and mapped the predominance of two primary runoff generating processes: infiltration‐excess and saturation‐excess runoff (IE vs. SE, respectively). Specifically, we constructed a gap‐filled grid of surficial saturated hydraulic conductivity using the Soil Survey Geographic and State Soil Geographic soils databases. We then compared surficial saturated hydraulic conductivity values with 1‐hr rainfall‐frequency estimates across a range of return intervals derived from CONUS‐scale random forest models. This assessment of the prevalence of IE versus SE runoff also incorporated a simple uncertainty analysis, as well as a case study of how the approach could be used to evaluate future alterations in runoff processes resulting from climate change. We found a low likelihood of IE runoff on undisturbed soils over much of CONUS for 1‐hr storms with return intervals &lt;5 years. Conversely, IE runoff is most likely in the Central United States (i.e., Texas, Louisiana, Kansas, Missouri, Iowa, Nebraska, and Western South Dakota), and the relative predominance of runoff types is highly sensitive to the accuracy of the estimated soil properties. Leveraging publicly available data sets and reproducible workflows, our approach offers greater understanding of predominant runoff generating processes over a continental extent and expands the technical resources available to environmental planners, regulators, and modellers.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hyp.13296</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3655-5206</orcidid><orcidid>https://orcid.org/0000-0003-0641-4450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2018-12, Vol.32 (26), p.3881-3890
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_2153984426
source Wiley Online Library Journals Frontfile Complete
subjects Case studies
Climate change
contiguous United States
Frequency estimation
Hydraulic conductivity
Infiltration
infiltration excess runoff
Intervals
Natural resources
precipitation frequency analysis
Rain
Rainfall
Rainfall frequency
random forest
Regulators
Runoff
runoff generation
Saturation
saturation excess runoff
Soil
Soil properties
Storms
Surveying
Training
Uncertainty analysis
title Estimating dominant runoff modes across the conterminous United States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20dominant%20runoff%20modes%20across%20the%20conterminous%20United%20States&rft.jtitle=Hydrological%20processes&rft.au=Buchanan,%20Brian&rft.date=2018-12-30&rft.volume=32&rft.issue=26&rft.spage=3881&rft.epage=3890&rft.pages=3881-3890&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.13296&rft_dat=%3Cproquest_cross%3E2153984426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153984426&rft_id=info:pmid/&rfr_iscdi=true