Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems
•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation o...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-12, Vol.375, p.763-782 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | |
container_start_page | 763 |
container_title | Journal of computational physics |
container_volume | 375 |
creator | DiPietro, Kelsey L. Haynes, Ronald D. Huang, Weizhang Lindsay, Alan E. Yu, Yufei |
description | •New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains.
Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases. |
doi_str_mv | 10.1016/j.jcp.2018.08.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153610467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118305862</els_id><sourcerecordid>2153610467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoB3gKeZ-2ezCODJ1l8wYoXPYdspkczzEzWSXbFm__gH_olZljPQkPTUFVdVYydIywQsLhsF63ZLFJAuYA4uThgM4QKkrTE4pDNAFJMqqrCY3bifQsAMs_kjLlHt7PDK-_Jv3Fv-22ng3UDdw03bgjaBO4peG4HHj4cr21Pg48A3fHe1dT5CUmd9sGan69v6siE0fkQVQyvqZnuSW8zunVHvT9lR43uPJ397Tl7ub15Xt4nq6e7h-X1KjGikCEpRVqsZVGUKZVQ1bIhWWKZoSkFZJitBaQS9boxhLrOtCGZNXmlCSRkWqAQc3ax142P37fkg2rddoy2vUoxFwVCVpQRhXuUiZ79SI3ajLbX46dCUFOvqlWxVzX1qiBOPilf7TkxPO0sjcobS4Oh2o4xrKqd_Yf9C3SJguU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153610467</pqid></control><display><type>article</type><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</creator><creatorcontrib>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</creatorcontrib><description>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains.
Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.08.053</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptively ; Blow up ; Computational physics ; Computer simulation ; Deflection ; Dependence ; Electrostatics ; Finite element method ; High order PDEs ; Materials elasticity ; Mathematical models ; Mechanical systems ; Microelectromechanical systems ; Moving mesh methods ; Numerical methods ; Partial differential equations ; Perturbation methods ; Simulation ; Singular perturbation ; Singularities ; Software ; Two dimensional models</subject><ispartof>Journal of computational physics, 2018-12, Vol.375, p.763-782</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</citedby><cites>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</cites><orcidid>0000-0002-4804-3152 ; 0000-0001-8221-8668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.08.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Haynes, Ronald D.</creatorcontrib><creatorcontrib>Huang, Weizhang</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><creatorcontrib>Yu, Yufei</creatorcontrib><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><title>Journal of computational physics</title><description>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains.
Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</description><subject>Adaptively</subject><subject>Blow up</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Deflection</subject><subject>Dependence</subject><subject>Electrostatics</subject><subject>Finite element method</subject><subject>High order PDEs</subject><subject>Materials elasticity</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Microelectromechanical systems</subject><subject>Moving mesh methods</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Perturbation methods</subject><subject>Simulation</subject><subject>Singular perturbation</subject><subject>Singularities</subject><subject>Software</subject><subject>Two dimensional models</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoB3gKeZ-2ezCODJ1l8wYoXPYdspkczzEzWSXbFm__gH_olZljPQkPTUFVdVYydIywQsLhsF63ZLFJAuYA4uThgM4QKkrTE4pDNAFJMqqrCY3bifQsAMs_kjLlHt7PDK-_Jv3Fv-22ng3UDdw03bgjaBO4peG4HHj4cr21Pg48A3fHe1dT5CUmd9sGan69v6siE0fkQVQyvqZnuSW8zunVHvT9lR43uPJ397Tl7ub15Xt4nq6e7h-X1KjGikCEpRVqsZVGUKZVQ1bIhWWKZoSkFZJitBaQS9boxhLrOtCGZNXmlCSRkWqAQc3ax142P37fkg2rddoy2vUoxFwVCVpQRhXuUiZ79SI3ajLbX46dCUFOvqlWxVzX1qiBOPilf7TkxPO0sjcobS4Oh2o4xrKqd_Yf9C3SJguU</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>DiPietro, Kelsey L.</creator><creator>Haynes, Ronald D.</creator><creator>Huang, Weizhang</creator><creator>Lindsay, Alan E.</creator><creator>Yu, Yufei</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4804-3152</orcidid><orcidid>https://orcid.org/0000-0001-8221-8668</orcidid></search><sort><creationdate>20181215</creationdate><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><author>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptively</topic><topic>Blow up</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Deflection</topic><topic>Dependence</topic><topic>Electrostatics</topic><topic>Finite element method</topic><topic>High order PDEs</topic><topic>Materials elasticity</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Microelectromechanical systems</topic><topic>Moving mesh methods</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Perturbation methods</topic><topic>Simulation</topic><topic>Singular perturbation</topic><topic>Singularities</topic><topic>Software</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Haynes, Ronald D.</creatorcontrib><creatorcontrib>Huang, Weizhang</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><creatorcontrib>Yu, Yufei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiPietro, Kelsey L.</au><au>Haynes, Ronald D.</au><au>Huang, Weizhang</au><au>Lindsay, Alan E.</au><au>Yu, Yufei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</atitle><jtitle>Journal of computational physics</jtitle><date>2018-12-15</date><risdate>2018</risdate><volume>375</volume><spage>763</spage><epage>782</epage><pages>763-782</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains.
Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.08.053</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4804-3152</orcidid><orcidid>https://orcid.org/0000-0001-8221-8668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2018-12, Vol.375, p.763-782 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2153610467 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adaptively Blow up Computational physics Computer simulation Deflection Dependence Electrostatics Finite element method High order PDEs Materials elasticity Mathematical models Mechanical systems Microelectromechanical systems Moving mesh methods Numerical methods Partial differential equations Perturbation methods Simulation Singular perturbation Singularities Software Two dimensional models |
title | Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20mesh%20simulation%20of%20contact%20sets%20in%20two%20dimensional%20models%20of%20elastic%E2%80%93electrostatic%20deflection%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=DiPietro,%20Kelsey%20L.&rft.date=2018-12-15&rft.volume=375&rft.spage=763&rft.epage=782&rft.pages=763-782&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.08.053&rft_dat=%3Cproquest_cross%3E2153610467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153610467&rft_id=info:pmid/&rft_els_id=S0021999118305862&rfr_iscdi=true |