Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems

•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-12, Vol.375, p.763-782
Hauptverfasser: DiPietro, Kelsey L., Haynes, Ronald D., Huang, Weizhang, Lindsay, Alan E., Yu, Yufei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue
container_start_page 763
container_title Journal of computational physics
container_volume 375
creator DiPietro, Kelsey L.
Haynes, Ronald D.
Huang, Weizhang
Lindsay, Alan E.
Yu, Yufei
description •New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.
doi_str_mv 10.1016/j.jcp.2018.08.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153610467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118305862</els_id><sourcerecordid>2153610467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoB3gKeZ-2ezCODJ1l8wYoXPYdspkczzEzWSXbFm__gH_olZljPQkPTUFVdVYydIywQsLhsF63ZLFJAuYA4uThgM4QKkrTE4pDNAFJMqqrCY3bifQsAMs_kjLlHt7PDK-_Jv3Fv-22ng3UDdw03bgjaBO4peG4HHj4cr21Pg48A3fHe1dT5CUmd9sGan69v6siE0fkQVQyvqZnuSW8zunVHvT9lR43uPJ397Tl7ub15Xt4nq6e7h-X1KjGikCEpRVqsZVGUKZVQ1bIhWWKZoSkFZJitBaQS9boxhLrOtCGZNXmlCSRkWqAQc3ax142P37fkg2rddoy2vUoxFwVCVpQRhXuUiZ79SI3ajLbX46dCUFOvqlWxVzX1qiBOPilf7TkxPO0sjcobS4Oh2o4xrKqd_Yf9C3SJguU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153610467</pqid></control><display><type>article</type><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</creator><creatorcontrib>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</creatorcontrib><description>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.08.053</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptively ; Blow up ; Computational physics ; Computer simulation ; Deflection ; Dependence ; Electrostatics ; Finite element method ; High order PDEs ; Materials elasticity ; Mathematical models ; Mechanical systems ; Microelectromechanical systems ; Moving mesh methods ; Numerical methods ; Partial differential equations ; Perturbation methods ; Simulation ; Singular perturbation ; Singularities ; Software ; Two dimensional models</subject><ispartof>Journal of computational physics, 2018-12, Vol.375, p.763-782</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</citedby><cites>FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</cites><orcidid>0000-0002-4804-3152 ; 0000-0001-8221-8668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.08.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Haynes, Ronald D.</creatorcontrib><creatorcontrib>Huang, Weizhang</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><creatorcontrib>Yu, Yufei</creatorcontrib><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><title>Journal of computational physics</title><description>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</description><subject>Adaptively</subject><subject>Blow up</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Deflection</subject><subject>Dependence</subject><subject>Electrostatics</subject><subject>Finite element method</subject><subject>High order PDEs</subject><subject>Materials elasticity</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Microelectromechanical systems</subject><subject>Moving mesh methods</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Perturbation methods</subject><subject>Simulation</subject><subject>Singular perturbation</subject><subject>Singularities</subject><subject>Software</subject><subject>Two dimensional models</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoB3gKeZ-2ezCODJ1l8wYoXPYdspkczzEzWSXbFm__gH_olZljPQkPTUFVdVYydIywQsLhsF63ZLFJAuYA4uThgM4QKkrTE4pDNAFJMqqrCY3bifQsAMs_kjLlHt7PDK-_Jv3Fv-22ng3UDdw03bgjaBO4peG4HHj4cr21Pg48A3fHe1dT5CUmd9sGan69v6siE0fkQVQyvqZnuSW8zunVHvT9lR43uPJ397Tl7ub15Xt4nq6e7h-X1KjGikCEpRVqsZVGUKZVQ1bIhWWKZoSkFZJitBaQS9boxhLrOtCGZNXmlCSRkWqAQc3ax142P37fkg2rddoy2vUoxFwVCVpQRhXuUiZ79SI3ajLbX46dCUFOvqlWxVzX1qiBOPilf7TkxPO0sjcobS4Oh2o4xrKqd_Yf9C3SJguU</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>DiPietro, Kelsey L.</creator><creator>Haynes, Ronald D.</creator><creator>Huang, Weizhang</creator><creator>Lindsay, Alan E.</creator><creator>Yu, Yufei</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4804-3152</orcidid><orcidid>https://orcid.org/0000-0001-8221-8668</orcidid></search><sort><creationdate>20181215</creationdate><title>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</title><author>DiPietro, Kelsey L. ; Haynes, Ronald D. ; Huang, Weizhang ; Lindsay, Alan E. ; Yu, Yufei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7326b86672e709d8fe871741c730414b30281abfce1ad4ace84f59ae0804a3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptively</topic><topic>Blow up</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Deflection</topic><topic>Dependence</topic><topic>Electrostatics</topic><topic>Finite element method</topic><topic>High order PDEs</topic><topic>Materials elasticity</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Microelectromechanical systems</topic><topic>Moving mesh methods</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Perturbation methods</topic><topic>Simulation</topic><topic>Singular perturbation</topic><topic>Singularities</topic><topic>Software</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Haynes, Ronald D.</creatorcontrib><creatorcontrib>Huang, Weizhang</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><creatorcontrib>Yu, Yufei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiPietro, Kelsey L.</au><au>Haynes, Ronald D.</au><au>Huang, Weizhang</au><au>Lindsay, Alan E.</au><au>Yu, Yufei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems</atitle><jtitle>Journal of computational physics</jtitle><date>2018-12-15</date><risdate>2018</risdate><volume>375</volume><spage>763</spage><epage>782</epage><pages>763-782</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•New moving mesh method with application to Micro Electro Mechanical Systems (MEMS).•Resolution of singular solutions in fourth order parabolic PDEs.•Robust handling of non-convex and non-simply connected two dimensional domains. Numerical and analytical methods are developed for the investigation of contact sets in electrostatic–elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.08.053</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4804-3152</orcidid><orcidid>https://orcid.org/0000-0001-8221-8668</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-12, Vol.375, p.763-782
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2153610467
source Access via ScienceDirect (Elsevier)
subjects Adaptively
Blow up
Computational physics
Computer simulation
Deflection
Dependence
Electrostatics
Finite element method
High order PDEs
Materials elasticity
Mathematical models
Mechanical systems
Microelectromechanical systems
Moving mesh methods
Numerical methods
Partial differential equations
Perturbation methods
Simulation
Singular perturbation
Singularities
Software
Two dimensional models
title Moving mesh simulation of contact sets in two dimensional models of elastic–electrostatic deflection problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20mesh%20simulation%20of%20contact%20sets%20in%20two%20dimensional%20models%20of%20elastic%E2%80%93electrostatic%20deflection%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=DiPietro,%20Kelsey%20L.&rft.date=2018-12-15&rft.volume=375&rft.spage=763&rft.epage=782&rft.pages=763-782&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.08.053&rft_dat=%3Cproquest_cross%3E2153610467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153610467&rft_id=info:pmid/&rft_els_id=S0021999118305862&rfr_iscdi=true