Boundary conditions for two-sided fractional diffusion
•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any comb...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2019-01, Vol.376, p.1089-1107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1107 |
---|---|
container_issue | |
container_start_page | 1089 |
container_title | Journal of computational physics |
container_volume | 376 |
creator | Kelly, James F. Sankaranarayanan, Harish Meerschaert, Mark M. |
description | •Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time.
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed. |
doi_str_mv | 10.1016/j.jcp.2018.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153599888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118306673</els_id><sourcerecordid>2153599888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZMmeNLFL1jwsvcQ8wEpa7MmreK_N2U9e5qZl_cdZh5CrhEaBOS3QzOYQ0MBRZkbQDghKwQJNe2Rn5IVAMVaSonn5CLnAQAE68SK8Ic4j1ann8rE0YYpxDFXPqZq-o51DtbZyidtFl3vKxu8n3PpL8mZ1_vsrv7qmuyeHnebl3r79vy6ud_WpuViqrW2lvddz7gEClaA572xnvVSOpComTTMt533-r0DjdrxHsH6liNoCrRdk5vj2kOKn7PLkxrinMolWVFkLZNSCFFceHSZFHNOzqtDCh_lJ4WgFjpqUIWOWugsUqFTMnfHjCvXfwWXVDbBjcbZkJyZlI3hn_QvoodsMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153599888</pqid></control><display><type>article</type><title>Boundary conditions for two-sided fractional diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</creator><creatorcontrib>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</creatorcontrib><description>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time.
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.10.010</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Boundary conditions ; Calculus ; Computational physics ; Derivatives ; Diffusion ; Fluxes ; Fractional calculus ; Fractions ; Numerical analysis ; Numerical methods ; Riesz derivative ; Stability analysis ; Steady state ; Systems stability</subject><ispartof>Journal of computational physics, 2019-01, Vol.376, p.1089-1107</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</citedby><cites>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</cites><orcidid>0000-0002-7714-1325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999118306673$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Sankaranarayanan, Harish</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><title>Boundary conditions for two-sided fractional diffusion</title><title>Journal of computational physics</title><description>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time.
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</description><subject>Boundary conditions</subject><subject>Calculus</subject><subject>Computational physics</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Fluxes</subject><subject>Fractional calculus</subject><subject>Fractions</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Riesz derivative</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>Systems stability</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZMmeNLFL1jwsvcQ8wEpa7MmreK_N2U9e5qZl_cdZh5CrhEaBOS3QzOYQ0MBRZkbQDghKwQJNe2Rn5IVAMVaSonn5CLnAQAE68SK8Ic4j1ann8rE0YYpxDFXPqZq-o51DtbZyidtFl3vKxu8n3PpL8mZ1_vsrv7qmuyeHnebl3r79vy6ud_WpuViqrW2lvddz7gEClaA572xnvVSOpComTTMt533-r0DjdrxHsH6liNoCrRdk5vj2kOKn7PLkxrinMolWVFkLZNSCFFceHSZFHNOzqtDCh_lJ4WgFjpqUIWOWugsUqFTMnfHjCvXfwWXVDbBjcbZkJyZlI3hn_QvoodsMQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kelly, James F.</creator><creator>Sankaranarayanan, Harish</creator><creator>Meerschaert, Mark M.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7714-1325</orcidid></search><sort><creationdate>20190101</creationdate><title>Boundary conditions for two-sided fractional diffusion</title><author>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Calculus</topic><topic>Computational physics</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Fluxes</topic><topic>Fractional calculus</topic><topic>Fractions</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Riesz derivative</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Sankaranarayanan, Harish</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, James F.</au><au>Sankaranarayanan, Harish</au><au>Meerschaert, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary conditions for two-sided fractional diffusion</atitle><jtitle>Journal of computational physics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>376</volume><spage>1089</spage><epage>1107</epage><pages>1089-1107</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time.
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.10.010</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7714-1325</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2019-01, Vol.376, p.1089-1107 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2153599888 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary conditions Calculus Computational physics Derivatives Diffusion Fluxes Fractional calculus Fractions Numerical analysis Numerical methods Riesz derivative Stability analysis Steady state Systems stability |
title | Boundary conditions for two-sided fractional diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20conditions%20for%20two-sided%20fractional%20diffusion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kelly,%20James%20F.&rft.date=2019-01-01&rft.volume=376&rft.spage=1089&rft.epage=1107&rft.pages=1089-1107&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.10.010&rft_dat=%3Cproquest_cross%3E2153599888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153599888&rft_id=info:pmid/&rft_els_id=S0021999118306673&rfr_iscdi=true |