Boundary conditions for two-sided fractional diffusion

•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-01, Vol.376, p.1089-1107
Hauptverfasser: Kelly, James F., Sankaranarayanan, Harish, Meerschaert, Mark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1107
container_issue
container_start_page 1089
container_title Journal of computational physics
container_volume 376
creator Kelly, James F.
Sankaranarayanan, Harish
Meerschaert, Mark M.
description •Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time. This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.
doi_str_mv 10.1016/j.jcp.2018.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2153599888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118306673</els_id><sourcerecordid>2153599888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZMmeNLFL1jwsvcQ8wEpa7MmreK_N2U9e5qZl_cdZh5CrhEaBOS3QzOYQ0MBRZkbQDghKwQJNe2Rn5IVAMVaSonn5CLnAQAE68SK8Ic4j1ann8rE0YYpxDFXPqZq-o51DtbZyidtFl3vKxu8n3PpL8mZ1_vsrv7qmuyeHnebl3r79vy6ud_WpuViqrW2lvddz7gEClaA572xnvVSOpComTTMt533-r0DjdrxHsH6liNoCrRdk5vj2kOKn7PLkxrinMolWVFkLZNSCFFceHSZFHNOzqtDCh_lJ4WgFjpqUIWOWugsUqFTMnfHjCvXfwWXVDbBjcbZkJyZlI3hn_QvoodsMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153599888</pqid></control><display><type>article</type><title>Boundary conditions for two-sided fractional diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</creator><creatorcontrib>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</creatorcontrib><description>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time. This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.10.010</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Boundary conditions ; Calculus ; Computational physics ; Derivatives ; Diffusion ; Fluxes ; Fractional calculus ; Fractions ; Numerical analysis ; Numerical methods ; Riesz derivative ; Stability analysis ; Steady state ; Systems stability</subject><ispartof>Journal of computational physics, 2019-01, Vol.376, p.1089-1107</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</citedby><cites>FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</cites><orcidid>0000-0002-7714-1325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999118306673$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Sankaranarayanan, Harish</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><title>Boundary conditions for two-sided fractional diffusion</title><title>Journal of computational physics</title><description>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time. This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</description><subject>Boundary conditions</subject><subject>Calculus</subject><subject>Computational physics</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Fluxes</subject><subject>Fractional calculus</subject><subject>Fractions</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Riesz derivative</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>Systems stability</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zaZMmeNLFL1jwsvcQ8wEpa7MmreK_N2U9e5qZl_cdZh5CrhEaBOS3QzOYQ0MBRZkbQDghKwQJNe2Rn5IVAMVaSonn5CLnAQAE68SK8Ic4j1ann8rE0YYpxDFXPqZq-o51DtbZyidtFl3vKxu8n3PpL8mZ1_vsrv7qmuyeHnebl3r79vy6ud_WpuViqrW2lvddz7gEClaA572xnvVSOpComTTMt533-r0DjdrxHsH6liNoCrRdk5vj2kOKn7PLkxrinMolWVFkLZNSCFFceHSZFHNOzqtDCh_lJ4WgFjpqUIWOWugsUqFTMnfHjCvXfwWXVDbBjcbZkJyZlI3hn_QvoodsMQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kelly, James F.</creator><creator>Sankaranarayanan, Harish</creator><creator>Meerschaert, Mark M.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7714-1325</orcidid></search><sort><creationdate>20190101</creationdate><title>Boundary conditions for two-sided fractional diffusion</title><author>Kelly, James F. ; Sankaranarayanan, Harish ; Meerschaert, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aadd6747569020d80f67cdf5799e091a59c5f34ffab40a1ae6710df3610a2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Calculus</topic><topic>Computational physics</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Fluxes</topic><topic>Fractional calculus</topic><topic>Fractions</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Riesz derivative</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, James F.</creatorcontrib><creatorcontrib>Sankaranarayanan, Harish</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, James F.</au><au>Sankaranarayanan, Harish</au><au>Meerschaert, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary conditions for two-sided fractional diffusion</atitle><jtitle>Journal of computational physics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>376</volume><spage>1089</spage><epage>1107</epage><pages>1089-1107</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time. This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.10.010</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7714-1325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-01, Vol.376, p.1089-1107
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2153599888
source Elsevier ScienceDirect Journals
subjects Boundary conditions
Calculus
Computational physics
Derivatives
Diffusion
Fluxes
Fractional calculus
Fractions
Numerical analysis
Numerical methods
Riesz derivative
Stability analysis
Steady state
Systems stability
title Boundary conditions for two-sided fractional diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20conditions%20for%20two-sided%20fractional%20diffusion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kelly,%20James%20F.&rft.date=2019-01-01&rft.volume=376&rft.spage=1089&rft.epage=1107&rft.pages=1089-1107&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.10.010&rft_dat=%3Cproquest_cross%3E2153599888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153599888&rft_id=info:pmid/&rft_els_id=S0021999118306673&rfr_iscdi=true