Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem

Evolutionary algorithms have been shown to be effective in providing configuration optimisation to dynamic load balancing in distributed database systems and Web servers. This paper explores the tuning parameter performance profile of such techniques over a variety of problems, including the adaptiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BT technology journal 2000-10, Vol.18 (4), p.66
1. Verfasser: Oates, M J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 66
container_title BT technology journal
container_volume 18
creator Oates, M J
description Evolutionary algorithms have been shown to be effective in providing configuration optimisation to dynamic load balancing in distributed database systems and Web servers. This paper explores the tuning parameter performance profile of such techniques over a variety of problems, including the adaptive distributed database management problem (ADDMP), focusing on a range of interesting and important features. The ability of the evolutionary search process to reliably find good solutions to a dynamic problem in a minimal and consistent run-time is of paramount importance when considering their application to real-time industrial control problems. This paper demonstrates the existence of certain optimal parameter values, particularly for the rate of applied mutation, which are shown to produce consistently good problem solutions in a low number of evaluations with a minimum standard deviation. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1026706725410
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_215204516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>501061091</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-1f6edf34d7111c86a3e6ab75c1567e9fc6d7a8f2aeabc6cdd357997c1a43267d3</originalsourceid><addsrcrecordid>eNotjz1PwzAURS0EEqUws1rsAb84thO2qC0fUhEdYK5e7Jc2VRIXx6nEvycIpnOXe64uY7cg7kGk8qF8nKCN0CZVGYgzNgNlZAJFoc6nLFWeyCLLL9nVMByEEIUBMWN2dfLtGBvfY_jmZbvzoYn7jm8o1D502Fvim-DrpqWB-57HPfHS4TE2J-LLZoihqcZIji8xYoUD8TfscUcd9fG3WLXUXbOLGtuBbv45Z59Pq4_FS7J-f35dlOvkCLmICdSaXC0zZwDA5holaayMsqC0oaK22hnM6xQJK6utc1KZojAWMJPTcSfn7O7Pewz-a6Qhbg9-DP00uU1BpSJToOUPAYZY-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215204516</pqid></control><display><type>article</type><title>Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem</title><source>SpringerLink Journals</source><creator>Oates, M J</creator><creatorcontrib>Oates, M J</creatorcontrib><description>Evolutionary algorithms have been shown to be effective in providing configuration optimisation to dynamic load balancing in distributed database systems and Web servers. This paper explores the tuning parameter performance profile of such techniques over a variety of problems, including the adaptive distributed database management problem (ADDMP), focusing on a range of interesting and important features. The ability of the evolutionary search process to reliably find good solutions to a dynamic problem in a minimal and consistent run-time is of paramount importance when considering their application to real-time industrial control problems. This paper demonstrates the existence of certain optimal parameter values, particularly for the rate of applied mutation, which are shown to produce consistently good problem solutions in a low number of evaluations with a minimum standard deviation. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1358-3948</identifier><identifier>EISSN: 1573-1995</identifier><identifier>DOI: 10.1023/A:1026706725410</identifier><language>eng</language><publisher>Ipswich: British Telecommunications PLC</publisher><subject>Algorithms ; Data base management systems ; Genetic algorithms ; Information systems ; Load ; Queuing theory ; Servers ; Studies ; Telecommunications</subject><ispartof>BT technology journal, 2000-10, Vol.18 (4), p.66</ispartof><rights>Copyright (c) 2000 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Oates, M J</creatorcontrib><title>Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem</title><title>BT technology journal</title><description>Evolutionary algorithms have been shown to be effective in providing configuration optimisation to dynamic load balancing in distributed database systems and Web servers. This paper explores the tuning parameter performance profile of such techniques over a variety of problems, including the adaptive distributed database management problem (ADDMP), focusing on a range of interesting and important features. The ability of the evolutionary search process to reliably find good solutions to a dynamic problem in a minimal and consistent run-time is of paramount importance when considering their application to real-time industrial control problems. This paper demonstrates the existence of certain optimal parameter values, particularly for the rate of applied mutation, which are shown to produce consistently good problem solutions in a low number of evaluations with a minimum standard deviation. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Data base management systems</subject><subject>Genetic algorithms</subject><subject>Information systems</subject><subject>Load</subject><subject>Queuing theory</subject><subject>Servers</subject><subject>Studies</subject><subject>Telecommunications</subject><issn>1358-3948</issn><issn>1573-1995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotjz1PwzAURS0EEqUws1rsAb84thO2qC0fUhEdYK5e7Jc2VRIXx6nEvycIpnOXe64uY7cg7kGk8qF8nKCN0CZVGYgzNgNlZAJFoc6nLFWeyCLLL9nVMByEEIUBMWN2dfLtGBvfY_jmZbvzoYn7jm8o1D502Fvim-DrpqWB-57HPfHS4TE2J-LLZoihqcZIji8xYoUD8TfscUcd9fG3WLXUXbOLGtuBbv45Z59Pq4_FS7J-f35dlOvkCLmICdSaXC0zZwDA5holaayMsqC0oaK22hnM6xQJK6utc1KZojAWMJPTcSfn7O7Pewz-a6Qhbg9-DP00uU1BpSJToOUPAYZY-g</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Oates, M J</creator><general>British Telecommunications PLC</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0F</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20001001</creationdate><title>Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem</title><author>Oates, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-1f6edf34d7111c86a3e6ab75c1567e9fc6d7a8f2aeabc6cdd357997c1a43267d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Data base management systems</topic><topic>Genetic algorithms</topic><topic>Information systems</topic><topic>Load</topic><topic>Queuing theory</topic><topic>Servers</topic><topic>Studies</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oates, M J</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>BT technology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oates, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem</atitle><jtitle>BT technology journal</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>66</spage><pages>66-</pages><issn>1358-3948</issn><eissn>1573-1995</eissn><abstract>Evolutionary algorithms have been shown to be effective in providing configuration optimisation to dynamic load balancing in distributed database systems and Web servers. This paper explores the tuning parameter performance profile of such techniques over a variety of problems, including the adaptive distributed database management problem (ADDMP), focusing on a range of interesting and important features. The ability of the evolutionary search process to reliably find good solutions to a dynamic problem in a minimal and consistent run-time is of paramount importance when considering their application to real-time industrial control problems. This paper demonstrates the existence of certain optimal parameter values, particularly for the rate of applied mutation, which are shown to produce consistently good problem solutions in a low number of evaluations with a minimum standard deviation. [PUBLICATION ABSTRACT]</abstract><cop>Ipswich</cop><pub>British Telecommunications PLC</pub><doi>10.1023/A:1026706725410</doi></addata></record>
fulltext fulltext
identifier ISSN: 1358-3948
ispartof BT technology journal, 2000-10, Vol.18 (4), p.66
issn 1358-3948
1573-1995
language eng
recordid cdi_proquest_journals_215204516
source SpringerLink Journals
subjects Algorithms
Data base management systems
Genetic algorithms
Information systems
Load
Queuing theory
Servers
Studies
Telecommunications
title Evolutionary Algorithm Performance Profiles on the Adaptive Distributed Database Management Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Algorithm%20Performance%20Profiles%20on%20the%20Adaptive%20Distributed%20Database%20Management%20Problem&rft.jtitle=BT%20technology%20journal&rft.au=Oates,%20M%20J&rft.date=2000-10-01&rft.volume=18&rft.issue=4&rft.spage=66&rft.pages=66-&rft.issn=1358-3948&rft.eissn=1573-1995&rft_id=info:doi/10.1023/A:1026706725410&rft_dat=%3Cproquest%3E501061091%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215204516&rft_id=info:pmid/&rfr_iscdi=true