Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization

Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2018-11, Vol.54 (6), p.629-641
Hauptverfasser: Goldfeld, M. A., Zakharova, Yu. V., Fedorov, A. V., Fedorova, N. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 6
container_start_page 629
container_title Combustion, explosion, and shock waves
container_volume 54
creator Goldfeld, M. A.
Zakharova, Yu. V.
Fedorov, A. V.
Fedorova, N. N.
description Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 10 6 m −1 , and total temperature T 0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the k – ω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.
doi_str_mv 10.1134/S0010508218060011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151301182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151301182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-390e165b9e343643e5e7ebffdb7bee9ff7039fc302373dcc2660051e7847eed23</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq_nYbHaPUlotFDys4nHJZic1pd3UJKvorzdLFQ_iaR7zPoZ5CF1Sck0pz29qQigRpGS0JEXC9AhNqJA8K3kujtFkpLORP0VnIWwIIYzlxQSZuTGgI3YGxxfAz-oNcB39oOPg4We72Lp3bHuscD3swQfXW41nbtcOITqPXY-X695Gm4DquyRXuzFFtXZrP9W4P0cnRm0DXHzPKXpazB9n99nq4W45u11lmtMiZrwiQAvRVsBzXuQcBEhojela2QJUxkjCK6M5YVzyTmtWpF8FBVnmEqBjfIquDrl7714HCLHZuMH36WTDqKA8FVOOKnpQae9C8GCavbc75T8aSpqxzuZPncnDDp6QtP0a_G_y_6YvOfV2JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151301182</pqid></control><display><type>article</type><title>Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization</title><source>SpringerLink (Online service)</source><creator>Goldfeld, M. A. ; Zakharova, Yu. V. ; Fedorov, A. V. ; Fedorova, N. N.</creator><creatorcontrib>Goldfeld, M. A. ; Zakharova, Yu. V. ; Fedorov, A. V. ; Fedorova, N. N.</creatorcontrib><description>Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 10 6 m −1 , and total temperature T 0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the k – ω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508218060011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamics ; Chemical reactions ; Classical and Continuum Physics ; Classical Mechanics ; Combustion chambers ; Computational fluid dynamics ; Computer simulation ; Configurations ; Control ; Dynamical Systems ; Engineering ; Enthalpy ; Entrances ; Flight conditions ; Flow control ; Fluid flow ; Ignition ; K-omega turbulence model ; Mach number ; Organic chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pressure distribution ; Reaction kinetics ; Reynolds number ; Stabilization ; Stress concentration ; Supersonic flow ; Turbulence models ; Vibration ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Combustion, explosion, and shock waves, 2018-11, Vol.54 (6), p.629-641</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-390e165b9e343643e5e7ebffdb7bee9ff7039fc302373dcc2660051e7847eed23</citedby><cites>FETCH-LOGICAL-c316t-390e165b9e343643e5e7ebffdb7bee9ff7039fc302373dcc2660051e7847eed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508218060011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508218060011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goldfeld, M. A.</creatorcontrib><creatorcontrib>Zakharova, Yu. V.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><creatorcontrib>Fedorova, N. N.</creatorcontrib><title>Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 10 6 m −1 , and total temperature T 0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the k – ω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.</description><subject>Aerodynamics</subject><subject>Chemical reactions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Combustion chambers</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Enthalpy</subject><subject>Entrances</subject><subject>Flight conditions</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Ignition</subject><subject>K-omega turbulence model</subject><subject>Mach number</subject><subject>Organic chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure distribution</subject><subject>Reaction kinetics</subject><subject>Reynolds number</subject><subject>Stabilization</subject><subject>Stress concentration</subject><subject>Supersonic flow</subject><subject>Turbulence models</subject><subject>Vibration</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq_nYbHaPUlotFDys4nHJZic1pd3UJKvorzdLFQ_iaR7zPoZ5CF1Sck0pz29qQigRpGS0JEXC9AhNqJA8K3kujtFkpLORP0VnIWwIIYzlxQSZuTGgI3YGxxfAz-oNcB39oOPg4We72Lp3bHuscD3swQfXW41nbtcOITqPXY-X695Gm4DquyRXuzFFtXZrP9W4P0cnRm0DXHzPKXpazB9n99nq4W45u11lmtMiZrwiQAvRVsBzXuQcBEhojela2QJUxkjCK6M5YVzyTmtWpF8FBVnmEqBjfIquDrl7714HCLHZuMH36WTDqKA8FVOOKnpQae9C8GCavbc75T8aSpqxzuZPncnDDp6QtP0a_G_y_6YvOfV2JQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Goldfeld, M. A.</creator><creator>Zakharova, Yu. V.</creator><creator>Fedorov, A. V.</creator><creator>Fedorova, N. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization</title><author>Goldfeld, M. A. ; Zakharova, Yu. V. ; Fedorov, A. V. ; Fedorova, N. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-390e165b9e343643e5e7ebffdb7bee9ff7039fc302373dcc2660051e7847eed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Chemical reactions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Combustion chambers</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Enthalpy</topic><topic>Entrances</topic><topic>Flight conditions</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Ignition</topic><topic>K-omega turbulence model</topic><topic>Mach number</topic><topic>Organic chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure distribution</topic><topic>Reaction kinetics</topic><topic>Reynolds number</topic><topic>Stabilization</topic><topic>Stress concentration</topic><topic>Supersonic flow</topic><topic>Turbulence models</topic><topic>Vibration</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldfeld, M. A.</creatorcontrib><creatorcontrib>Zakharova, Yu. V.</creatorcontrib><creatorcontrib>Fedorov, A. V.</creatorcontrib><creatorcontrib>Fedorova, N. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldfeld, M. A.</au><au>Zakharova, Yu. V.</au><au>Fedorov, A. V.</au><au>Fedorova, N. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>6</issue><spage>629</spage><epage>641</epage><pages>629-641</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 10 6 m −1 , and total temperature T 0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the k – ω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508218060011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2018-11, Vol.54 (6), p.629-641
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2151301182
source SpringerLink (Online service)
subjects Aerodynamics
Chemical reactions
Classical and Continuum Physics
Classical Mechanics
Combustion chambers
Computational fluid dynamics
Computer simulation
Configurations
Control
Dynamical Systems
Engineering
Enthalpy
Entrances
Flight conditions
Flow control
Fluid flow
Ignition
K-omega turbulence model
Mach number
Organic chemistry
Physical Chemistry
Physics
Physics and Astronomy
Pressure distribution
Reaction kinetics
Reynolds number
Stabilization
Stress concentration
Supersonic flow
Turbulence models
Vibration
Wind tunnel testing
Wind tunnels
title Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Wave%20Structure%20of%20the%20Flow%20in%20a%20Supersonic%20Combustor%20on%20Ignition%20and%20Flame%20Stabilization&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Goldfeld,%20M.%20A.&rft.date=2018-11-01&rft.volume=54&rft.issue=6&rft.spage=629&rft.epage=641&rft.pages=629-641&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508218060011&rft_dat=%3Cproquest_cross%3E2151301182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151301182&rft_id=info:pmid/&rfr_iscdi=true