Precision and efficiency in solid-state pseudopotential calculations
Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verificati...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2018-12, Vol.4 (1), p.1-13, Article 72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | npj computational materials |
container_volume | 4 |
creator | Prandini, Gianluca Marrazzo, Antimo Castelli, Ivano E. Mounet, Nicolas Marzari, Nicola |
description | Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
Density functional theory A protocol for testing pseudopotentials
Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide |
doi_str_mv | 10.1038/s41524-018-0127-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151203840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151203840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPFcnk6QfR1k_YUEPeg5pOpEsta1Je9h_b5YKevEwzBye9x14GLvkcM1BVDdRcoUyB16lwTLHE7ZCUGUu6gJO_9znbBPjHgB4jRVKWLG710DWRz_0menbjJzz1lNvD5nvszh0vs3jZCbKxkhzO4zDRP3kTZdZ09m5M1NKxgt25kwXafOz1-z94f5t-5TvXh6ft7e73EpUU47CcqWcLJyU0ApbyaYWRAStA8HBKScUKtFUiopCOlJoEsTrpjBliY0Qa3a19I5h-JopTno_zKFPLzVyxTG5kJAovlA2DDEGcnoM_tOEg-agj7704ksnX_roS2PK4JKJie0_KPw2_x_6BhJWbMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151203840</pqid></control><display><type>article</type><title>Precision and efficiency in solid-state pseudopotential calculations</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><creator>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</creator><creatorcontrib>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</creatorcontrib><description>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
Density functional theory A protocol for testing pseudopotentials
Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-018-0127-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/1034/1038 ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computing time ; Equations of state ; Libraries ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Solid state ; Theoretical</subject><ispartof>npj computational materials, 2018-12, Vol.4 (1), p.1-13, Article 72</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</citedby><cites>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</cites><orcidid>0000-0002-9764-0199 ; 0000-0001-5880-5045 ; 0000-0003-2053-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-018-0127-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-018-0127-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27929,27930,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Prandini, Gianluca</creatorcontrib><creatorcontrib>Marrazzo, Antimo</creatorcontrib><creatorcontrib>Castelli, Ivano E.</creatorcontrib><creatorcontrib>Mounet, Nicolas</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><title>Precision and efficiency in solid-state pseudopotential calculations</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
Density functional theory A protocol for testing pseudopotentials
Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</description><subject>639/301/1034/1037</subject><subject>639/301/1034/1038</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computing time</subject><subject>Equations of state</subject><subject>Libraries</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Solid state</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPFcnk6QfR1k_YUEPeg5pOpEsta1Je9h_b5YKevEwzBye9x14GLvkcM1BVDdRcoUyB16lwTLHE7ZCUGUu6gJO_9znbBPjHgB4jRVKWLG710DWRz_0menbjJzz1lNvD5nvszh0vs3jZCbKxkhzO4zDRP3kTZdZ09m5M1NKxgt25kwXafOz1-z94f5t-5TvXh6ft7e73EpUU47CcqWcLJyU0ApbyaYWRAStA8HBKScUKtFUiopCOlJoEsTrpjBliY0Qa3a19I5h-JopTno_zKFPLzVyxTG5kJAovlA2DDEGcnoM_tOEg-agj7704ksnX_roS2PK4JKJie0_KPw2_x_6BhJWbMA</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Prandini, Gianluca</creator><creator>Marrazzo, Antimo</creator><creator>Castelli, Ivano E.</creator><creator>Mounet, Nicolas</creator><creator>Marzari, Nicola</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-5880-5045</orcidid><orcidid>https://orcid.org/0000-0003-2053-9962</orcidid></search><sort><creationdate>20181206</creationdate><title>Precision and efficiency in solid-state pseudopotential calculations</title><author>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1034/1037</topic><topic>639/301/1034/1038</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computing time</topic><topic>Equations of state</topic><topic>Libraries</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Solid state</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prandini, Gianluca</creatorcontrib><creatorcontrib>Marrazzo, Antimo</creatorcontrib><creatorcontrib>Castelli, Ivano E.</creatorcontrib><creatorcontrib>Mounet, Nicolas</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prandini, Gianluca</au><au>Marrazzo, Antimo</au><au>Castelli, Ivano E.</au><au>Mounet, Nicolas</au><au>Marzari, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision and efficiency in solid-state pseudopotential calculations</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2018-12-06</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>72</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
Density functional theory A protocol for testing pseudopotentials
Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-018-0127-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-5880-5045</orcidid><orcidid>https://orcid.org/0000-0003-2053-9962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2018-12, Vol.4 (1), p.1-13, Article 72 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2151203840 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals |
subjects | 639/301/1034/1037 639/301/1034/1038 Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Computing time Equations of state Libraries Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Solid state Theoretical |
title | Precision and efficiency in solid-state pseudopotential calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20and%20efficiency%20in%20solid-state%20pseudopotential%20calculations&rft.jtitle=npj%20computational%20materials&rft.au=Prandini,%20Gianluca&rft.date=2018-12-06&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=72&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-018-0127-2&rft_dat=%3Cproquest_cross%3E2151203840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151203840&rft_id=info:pmid/&rfr_iscdi=true |