Precision and efficiency in solid-state pseudopotential calculations

Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2018-12, Vol.4 (1), p.1-13, Article 72
Hauptverfasser: Prandini, Gianluca, Marrazzo, Antimo, Castelli, Ivano E., Mounet, Nicolas, Marzari, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title npj computational materials
container_volume 4
creator Prandini, Gianluca
Marrazzo, Antimo
Castelli, Ivano E.
Mounet, Nicolas
Marzari, Nicola
description Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids. Density functional theory A protocol for testing pseudopotentials Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide
doi_str_mv 10.1038/s41524-018-0127-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151203840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151203840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPFcnk6QfR1k_YUEPeg5pOpEsta1Je9h_b5YKevEwzBye9x14GLvkcM1BVDdRcoUyB16lwTLHE7ZCUGUu6gJO_9znbBPjHgB4jRVKWLG710DWRz_0menbjJzz1lNvD5nvszh0vs3jZCbKxkhzO4zDRP3kTZdZ09m5M1NKxgt25kwXafOz1-z94f5t-5TvXh6ft7e73EpUU47CcqWcLJyU0ApbyaYWRAStA8HBKScUKtFUiopCOlJoEsTrpjBliY0Qa3a19I5h-JopTno_zKFPLzVyxTG5kJAovlA2DDEGcnoM_tOEg-agj7704ksnX_roS2PK4JKJie0_KPw2_x_6BhJWbMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151203840</pqid></control><display><type>article</type><title>Precision and efficiency in solid-state pseudopotential calculations</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><creator>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</creator><creatorcontrib>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</creatorcontrib><description>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids. Density functional theory A protocol for testing pseudopotentials Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-018-0127-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/301/1034/1038 ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computing time ; Equations of state ; Libraries ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Solid state ; Theoretical</subject><ispartof>npj computational materials, 2018-12, Vol.4 (1), p.1-13, Article 72</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</citedby><cites>FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</cites><orcidid>0000-0002-9764-0199 ; 0000-0001-5880-5045 ; 0000-0003-2053-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-018-0127-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-018-0127-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27929,27930,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Prandini, Gianluca</creatorcontrib><creatorcontrib>Marrazzo, Antimo</creatorcontrib><creatorcontrib>Castelli, Ivano E.</creatorcontrib><creatorcontrib>Mounet, Nicolas</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><title>Precision and efficiency in solid-state pseudopotential calculations</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids. Density functional theory A protocol for testing pseudopotentials Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</description><subject>639/301/1034/1037</subject><subject>639/301/1034/1038</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computing time</subject><subject>Equations of state</subject><subject>Libraries</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Solid state</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPFcnk6QfR1k_YUEPeg5pOpEsta1Je9h_b5YKevEwzBye9x14GLvkcM1BVDdRcoUyB16lwTLHE7ZCUGUu6gJO_9znbBPjHgB4jRVKWLG710DWRz_0menbjJzz1lNvD5nvszh0vs3jZCbKxkhzO4zDRP3kTZdZ09m5M1NKxgt25kwXafOz1-z94f5t-5TvXh6ft7e73EpUU47CcqWcLJyU0ApbyaYWRAStA8HBKScUKtFUiopCOlJoEsTrpjBliY0Qa3a19I5h-JopTno_zKFPLzVyxTG5kJAovlA2DDEGcnoM_tOEg-agj7704ksnX_roS2PK4JKJie0_KPw2_x_6BhJWbMA</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Prandini, Gianluca</creator><creator>Marrazzo, Antimo</creator><creator>Castelli, Ivano E.</creator><creator>Mounet, Nicolas</creator><creator>Marzari, Nicola</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-5880-5045</orcidid><orcidid>https://orcid.org/0000-0003-2053-9962</orcidid></search><sort><creationdate>20181206</creationdate><title>Precision and efficiency in solid-state pseudopotential calculations</title><author>Prandini, Gianluca ; Marrazzo, Antimo ; Castelli, Ivano E. ; Mounet, Nicolas ; Marzari, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-23c155f46f440d3c84b93eee0df0310f5f35253b85e664fe52a3c819b6a772b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1034/1037</topic><topic>639/301/1034/1038</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computing time</topic><topic>Equations of state</topic><topic>Libraries</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Solid state</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prandini, Gianluca</creatorcontrib><creatorcontrib>Marrazzo, Antimo</creatorcontrib><creatorcontrib>Castelli, Ivano E.</creatorcontrib><creatorcontrib>Mounet, Nicolas</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prandini, Gianluca</au><au>Marrazzo, Antimo</au><au>Castelli, Ivano E.</au><au>Mounet, Nicolas</au><au>Marzari, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision and efficiency in solid-state pseudopotential calculations</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2018-12-06</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>72</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids. Density functional theory A protocol for testing pseudopotentials Curated pseudopotential libraries obtained by systematic testing of available pseudopotentials are obtained using a newly proposed testing protocol. Density functional theory is very popular, but little attention has been devoted so far to the verification of the underlying pseudopotentials and projector augmented-wave approximations. The issue of performance is also of importance, as smoother pseudopotentials would enable faster calculations. Now, Nicola Marzari and colleagues from the Ecole Polytechnique Fédérale de Lausanne in Switzerland introduce a testing protocol for pseudopotentials in publicly available libraries, and select the optimal pseudopotential for 85 elements. The protocol includes both a verification step and performance evaluation step. Finding the right balance between precision and performance is particularly important for high-throughput materials searches, which are currently the focus of big efforts worldwide</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-018-0127-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-5880-5045</orcidid><orcidid>https://orcid.org/0000-0003-2053-9962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2018-12, Vol.4 (1), p.1-13, Article 72
issn 2057-3960
2057-3960
language eng
recordid cdi_proquest_journals_2151203840
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals
subjects 639/301/1034/1037
639/301/1034/1038
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Computing time
Equations of state
Libraries
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Solid state
Theoretical
title Precision and efficiency in solid-state pseudopotential calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20and%20efficiency%20in%20solid-state%20pseudopotential%20calculations&rft.jtitle=npj%20computational%20materials&rft.au=Prandini,%20Gianluca&rft.date=2018-12-06&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=72&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-018-0127-2&rft_dat=%3Cproquest_cross%3E2151203840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151203840&rft_id=info:pmid/&rfr_iscdi=true