Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity
Increasing inputs of terrigenous sediments from anthropic land use change elevates water column turbidity, reducing light availability to benthic primary producers that sustain estuarine food webs. For intertidal habitats, photosynthesis during low tide periods of emergence may provide resilience ag...
Gespeichert in:
Veröffentlicht in: | Journal of sea research 2018-12, Vol.142, p.101-112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | Journal of sea research |
container_volume | 142 |
creator | Drylie, Tarn P. Lohrer, Andrew M. Needham, Hazel R. Bulmer, Richard H. Pilditch, Conrad A. |
description | Increasing inputs of terrigenous sediments from anthropic land use change elevates water column turbidity, reducing light availability to benthic primary producers that sustain estuarine food webs. For intertidal habitats, photosynthesis during low tide periods of emergence may provide resilience against this temporally displaced stressor, yet the significance of low tide production (PP) has largely been overlooked. Emerged and submerged benthic PP was measured in adjacent seagrass (Zostera muelleri) and microphytobenthos-dominated (sandflat) soft-sediment habitats at three locations encompassing a turbidity gradient. Light and dark benthic incubation chambers were used to measure the flux of CO2 across emerged sediments, and dissolved oxygen across submerged sediments to derive net (NPP) and gross (GPP) PP. Seagrass NPP and GPP exceeded sandflat habitats (by 3–8 times) at low turbidity sites during submergence and at all sites during emergence (p 0.1) in turbid locations. Emerged NPP and GPP were higher (2–16 times) than submerged in all habitats and locations (p |
doi_str_mv | 10.1016/j.seares.2018.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151198447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385110118301072</els_id><sourcerecordid>2151198447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f68de4e084255b1b22d4163eaf128004d2a17464549978096f865213988830843</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwDxgsMSf4bCdxFiSo-JIqscBsOfGlcZUmYDtF_Htc0pnpbnje-3iS5BpoBhSK223mUTv0GaMgM1plFPKTZAGy5CkIEKex5zJPIdLnyYX3W0qhpBVfJP0DDqGzDfl0dqfdT6yjmZpgx4HYgeAO3QZNbAO6YI3uSadrG3TwB3JvDXoSN9ve4tAgCSPp7KYj3zrypBn7aTeQMLnaGht-LpOzVvcer451mXw8Pb6vXtL12_Pr6n6dNpyLkLaFNCiQSsHyvIaaMSOg4KhbYJJSYZiGUhQiF1VVSloVrSxyBrySUvKY4svkZp4bT_ya0Ae1HSc3xJWKQQ5QSSHKSImZatzovcNWHR0ooOrgVW3V7FUdvCpaqeg1xu7mGMYP9had8s3f88Y6bIIyo_1_wC831INU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151198447</pqid></control><display><type>article</type><title>Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Drylie, Tarn P. ; Lohrer, Andrew M. ; Needham, Hazel R. ; Bulmer, Richard H. ; Pilditch, Conrad A.</creator><creatorcontrib>Drylie, Tarn P. ; Lohrer, Andrew M. ; Needham, Hazel R. ; Bulmer, Richard H. ; Pilditch, Conrad A.</creatorcontrib><description>Increasing inputs of terrigenous sediments from anthropic land use change elevates water column turbidity, reducing light availability to benthic primary producers that sustain estuarine food webs. For intertidal habitats, photosynthesis during low tide periods of emergence may provide resilience against this temporally displaced stressor, yet the significance of low tide production (PP) has largely been overlooked. Emerged and submerged benthic PP was measured in adjacent seagrass (Zostera muelleri) and microphytobenthos-dominated (sandflat) soft-sediment habitats at three locations encompassing a turbidity gradient. Light and dark benthic incubation chambers were used to measure the flux of CO2 across emerged sediments, and dissolved oxygen across submerged sediments to derive net (NPP) and gross (GPP) PP. Seagrass NPP and GPP exceeded sandflat habitats (by 3–8 times) at low turbidity sites during submergence and at all sites during emergence (p < 0.01), whereas habitat differences were absent (p > 0.1) in turbid locations. Emerged NPP and GPP were higher (2–16 times) than submerged in all habitats and locations (p < 0.01). When standardised by mean incident photosynthetically active radiation (PAR), the difference between emerged and submerged seagrass PP increased with site turbidity, from 2 to 26 times greater. In a global context of increasing inputs of terrigenous sediment to estuaries, emerged PP may be crucial for providing resilience against benthic productivity losses in highly turbid environments.
[Display omitted]
•Turbidity reduces intertidal benthic primary production (PP) during submergence.•We compared emerged and submerged benthic PP along a turbidity gradient.•Emerged PP always exceeded submerged PP in both seagrass and sandflat habitats.•In both habitats the contribution of emerged PP to total PP increased with site turbidity.•Emerged PP may be crucial to benthic food webs in highly turbid locations.</description><identifier>ISSN: 1385-1101</identifier><identifier>EISSN: 1873-1414</identifier><identifier>DOI: 10.1016/j.seares.2018.09.015</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Benthos ; Brackishwater environment ; Carbon dioxide ; Dissolved oxygen ; Emergence ; Estuaries ; Estuarine environments ; Food chains ; Food webs ; Habitat selection ; Habitats ; Incubation period ; Land use ; Locations (working) ; Low tide ; Marine ecology ; Microphytobenthos ; New Zealand ; Photosynthesis ; Photosynthetically active radiation ; Phytobenthos ; Primary production ; Radiation ; Resilience ; Sea grasses ; Seagrass ; Sediment ; Sediments ; Submergence ; Terrigenous sediments ; Tides ; Turbidity ; Water column</subject><ispartof>Journal of sea research, 2018-12, Vol.142, p.101-112</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f68de4e084255b1b22d4163eaf128004d2a17464549978096f865213988830843</citedby><cites>FETCH-LOGICAL-c334t-f68de4e084255b1b22d4163eaf128004d2a17464549978096f865213988830843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1385110118301072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Drylie, Tarn P.</creatorcontrib><creatorcontrib>Lohrer, Andrew M.</creatorcontrib><creatorcontrib>Needham, Hazel R.</creatorcontrib><creatorcontrib>Bulmer, Richard H.</creatorcontrib><creatorcontrib>Pilditch, Conrad A.</creatorcontrib><title>Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity</title><title>Journal of sea research</title><description>Increasing inputs of terrigenous sediments from anthropic land use change elevates water column turbidity, reducing light availability to benthic primary producers that sustain estuarine food webs. For intertidal habitats, photosynthesis during low tide periods of emergence may provide resilience against this temporally displaced stressor, yet the significance of low tide production (PP) has largely been overlooked. Emerged and submerged benthic PP was measured in adjacent seagrass (Zostera muelleri) and microphytobenthos-dominated (sandflat) soft-sediment habitats at three locations encompassing a turbidity gradient. Light and dark benthic incubation chambers were used to measure the flux of CO2 across emerged sediments, and dissolved oxygen across submerged sediments to derive net (NPP) and gross (GPP) PP. Seagrass NPP and GPP exceeded sandflat habitats (by 3–8 times) at low turbidity sites during submergence and at all sites during emergence (p < 0.01), whereas habitat differences were absent (p > 0.1) in turbid locations. Emerged NPP and GPP were higher (2–16 times) than submerged in all habitats and locations (p < 0.01). When standardised by mean incident photosynthetically active radiation (PAR), the difference between emerged and submerged seagrass PP increased with site turbidity, from 2 to 26 times greater. In a global context of increasing inputs of terrigenous sediment to estuaries, emerged PP may be crucial for providing resilience against benthic productivity losses in highly turbid environments.
[Display omitted]
•Turbidity reduces intertidal benthic primary production (PP) during submergence.•We compared emerged and submerged benthic PP along a turbidity gradient.•Emerged PP always exceeded submerged PP in both seagrass and sandflat habitats.•In both habitats the contribution of emerged PP to total PP increased with site turbidity.•Emerged PP may be crucial to benthic food webs in highly turbid locations.</description><subject>Benthos</subject><subject>Brackishwater environment</subject><subject>Carbon dioxide</subject><subject>Dissolved oxygen</subject><subject>Emergence</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Habitat selection</subject><subject>Habitats</subject><subject>Incubation period</subject><subject>Land use</subject><subject>Locations (working)</subject><subject>Low tide</subject><subject>Marine ecology</subject><subject>Microphytobenthos</subject><subject>New Zealand</subject><subject>Photosynthesis</subject><subject>Photosynthetically active radiation</subject><subject>Phytobenthos</subject><subject>Primary production</subject><subject>Radiation</subject><subject>Resilience</subject><subject>Sea grasses</subject><subject>Seagrass</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Submergence</subject><subject>Terrigenous sediments</subject><subject>Tides</subject><subject>Turbidity</subject><subject>Water column</subject><issn>1385-1101</issn><issn>1873-1414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwDxgsMSf4bCdxFiSo-JIqscBsOfGlcZUmYDtF_Htc0pnpbnje-3iS5BpoBhSK223mUTv0GaMgM1plFPKTZAGy5CkIEKex5zJPIdLnyYX3W0qhpBVfJP0DDqGzDfl0dqfdT6yjmZpgx4HYgeAO3QZNbAO6YI3uSadrG3TwB3JvDXoSN9ve4tAgCSPp7KYj3zrypBn7aTeQMLnaGht-LpOzVvcer451mXw8Pb6vXtL12_Pr6n6dNpyLkLaFNCiQSsHyvIaaMSOg4KhbYJJSYZiGUhQiF1VVSloVrSxyBrySUvKY4svkZp4bT_ya0Ae1HSc3xJWKQQ5QSSHKSImZatzovcNWHR0ooOrgVW3V7FUdvCpaqeg1xu7mGMYP9had8s3f88Y6bIIyo_1_wC831INU</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Drylie, Tarn P.</creator><creator>Lohrer, Andrew M.</creator><creator>Needham, Hazel R.</creator><creator>Bulmer, Richard H.</creator><creator>Pilditch, Conrad A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201812</creationdate><title>Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity</title><author>Drylie, Tarn P. ; Lohrer, Andrew M. ; Needham, Hazel R. ; Bulmer, Richard H. ; Pilditch, Conrad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f68de4e084255b1b22d4163eaf128004d2a17464549978096f865213988830843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Benthos</topic><topic>Brackishwater environment</topic><topic>Carbon dioxide</topic><topic>Dissolved oxygen</topic><topic>Emergence</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Habitat selection</topic><topic>Habitats</topic><topic>Incubation period</topic><topic>Land use</topic><topic>Locations (working)</topic><topic>Low tide</topic><topic>Marine ecology</topic><topic>Microphytobenthos</topic><topic>New Zealand</topic><topic>Photosynthesis</topic><topic>Photosynthetically active radiation</topic><topic>Phytobenthos</topic><topic>Primary production</topic><topic>Radiation</topic><topic>Resilience</topic><topic>Sea grasses</topic><topic>Seagrass</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Submergence</topic><topic>Terrigenous sediments</topic><topic>Tides</topic><topic>Turbidity</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drylie, Tarn P.</creatorcontrib><creatorcontrib>Lohrer, Andrew M.</creatorcontrib><creatorcontrib>Needham, Hazel R.</creatorcontrib><creatorcontrib>Bulmer, Richard H.</creatorcontrib><creatorcontrib>Pilditch, Conrad A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of sea research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drylie, Tarn P.</au><au>Lohrer, Andrew M.</au><au>Needham, Hazel R.</au><au>Bulmer, Richard H.</au><au>Pilditch, Conrad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity</atitle><jtitle>Journal of sea research</jtitle><date>2018-12</date><risdate>2018</risdate><volume>142</volume><spage>101</spage><epage>112</epage><pages>101-112</pages><issn>1385-1101</issn><eissn>1873-1414</eissn><abstract>Increasing inputs of terrigenous sediments from anthropic land use change elevates water column turbidity, reducing light availability to benthic primary producers that sustain estuarine food webs. For intertidal habitats, photosynthesis during low tide periods of emergence may provide resilience against this temporally displaced stressor, yet the significance of low tide production (PP) has largely been overlooked. Emerged and submerged benthic PP was measured in adjacent seagrass (Zostera muelleri) and microphytobenthos-dominated (sandflat) soft-sediment habitats at three locations encompassing a turbidity gradient. Light and dark benthic incubation chambers were used to measure the flux of CO2 across emerged sediments, and dissolved oxygen across submerged sediments to derive net (NPP) and gross (GPP) PP. Seagrass NPP and GPP exceeded sandflat habitats (by 3–8 times) at low turbidity sites during submergence and at all sites during emergence (p < 0.01), whereas habitat differences were absent (p > 0.1) in turbid locations. Emerged NPP and GPP were higher (2–16 times) than submerged in all habitats and locations (p < 0.01). When standardised by mean incident photosynthetically active radiation (PAR), the difference between emerged and submerged seagrass PP increased with site turbidity, from 2 to 26 times greater. In a global context of increasing inputs of terrigenous sediment to estuaries, emerged PP may be crucial for providing resilience against benthic productivity losses in highly turbid environments.
[Display omitted]
•Turbidity reduces intertidal benthic primary production (PP) during submergence.•We compared emerged and submerged benthic PP along a turbidity gradient.•Emerged PP always exceeded submerged PP in both seagrass and sandflat habitats.•In both habitats the contribution of emerged PP to total PP increased with site turbidity.•Emerged PP may be crucial to benthic food webs in highly turbid locations.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.seares.2018.09.015</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1101 |
ispartof | Journal of sea research, 2018-12, Vol.142, p.101-112 |
issn | 1385-1101 1873-1414 |
language | eng |
recordid | cdi_proquest_journals_2151198447 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Benthos Brackishwater environment Carbon dioxide Dissolved oxygen Emergence Estuaries Estuarine environments Food chains Food webs Habitat selection Habitats Incubation period Land use Locations (working) Low tide Marine ecology Microphytobenthos New Zealand Photosynthesis Photosynthetically active radiation Phytobenthos Primary production Radiation Resilience Sea grasses Seagrass Sediment Sediments Submergence Terrigenous sediments Tides Turbidity Water column |
title | Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benthic%20primary%20production%20in%20emerged%20intertidal%20habitats%20provides%20resilience%20to%20high%20water%20column%20turbidity&rft.jtitle=Journal%20of%20sea%20research&rft.au=Drylie,%20Tarn%20P.&rft.date=2018-12&rft.volume=142&rft.spage=101&rft.epage=112&rft.pages=101-112&rft.issn=1385-1101&rft.eissn=1873-1414&rft_id=info:doi/10.1016/j.seares.2018.09.015&rft_dat=%3Cproquest_cross%3E2151198447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151198447&rft_id=info:pmid/&rft_els_id=S1385110118301072&rfr_iscdi=true |