Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory

The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-11, Vol.98 (19)
Hauptverfasser: Lutsyk, I, Rogala, M, Dabrowski, P, Krukowski, P, Kowalczyk, P J, Busiakiewicz, A, Kowalczyk, D A, Lacinska, E, Binder, J, Olszowska, N, Kopciuszynski, M, Szalowski, K, Gmitra, M, Stepniewski, R, Jalochowski, M, Kolodziej, J Kolodziej, Wysmolek, A, Klusek, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Physical review. B
container_volume 98
creator Lutsyk, I
Rogala, M
Dabrowski, P
Krukowski, P
Kowalczyk, P J
Busiakiewicz, A
Kowalczyk, D A
Lacinska, E
Binder, J
Olszowska, N
Kopciuszynski, M
Szalowski, K
Gmitra, M
Stepniewski, R
Jalochowski, M
Kolodziej, J Kolodziej
Wysmolek, A
Klusek, Z
description The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.
doi_str_mv 10.1103/PhysRevB.98.195425
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2151195882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151195882</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-db4c969a70c56a6e0a7897394092de8039fcfaba968d70302ba25591b68ba8983</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EEhX0AqwssW2K7cSJvYSq_EiVQFDWleNM2lSpHWynUm7AmoNxCE5CChUCVvPp6c280QxCZ5SMKSXxxcOq84-wvRpLMaaSJ4wfoAFLUhlJmcrDH-bkGA29XxNCaEpkRuQAvU9r0MFZU2nsg2t1aB1gW2JtNxswvnUqwAgbUK7u_onKFLgyvzXcrJQHv-un84_Xt7l6YjjveueyhsiBt_UWit5lg4V9MPbNF3htm26EvVbGVGaJQ2sM1Dv6a9ilFn1gFTpctkaHyhpV47AC67pTdFSq2sNwX0_Q8_V0PrmNZvc3d5PLWdRQGoeoyBPdn0ZlRPNUpUBUJmQWy4RIVoAgsSx1qXIlU1FkJCYsV4xzSfNU5EpIEZ-g8--5jbMvLfiwWNvW9Xv4BaOc9l8QgsWf3tmFYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151195882</pqid></control><display><type>article</type><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><source>American Physical Society Journals</source><creator>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</creator><creatorcontrib>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</creatorcontrib><description>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.195425</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Brillouin zones ; Charge density waves ; Density functional theory ; Electron states ; Electronic structure ; Electrons ; Energy gap ; Fermi level ; Insulators ; Mathematical analysis ; Metal-insulator transition ; Photoelectron spectroscopy ; Photoelectrons ; Scanning ; Scanning tunneling microscopy ; Spectrum analysis ; Spin-orbit interactions</subject><ispartof>Physical review. B, 2018-11, Vol.98 (19)</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lutsyk, I</creatorcontrib><creatorcontrib>Rogala, M</creatorcontrib><creatorcontrib>Dabrowski, P</creatorcontrib><creatorcontrib>Krukowski, P</creatorcontrib><creatorcontrib>Kowalczyk, P J</creatorcontrib><creatorcontrib>Busiakiewicz, A</creatorcontrib><creatorcontrib>Kowalczyk, D A</creatorcontrib><creatorcontrib>Lacinska, E</creatorcontrib><creatorcontrib>Binder, J</creatorcontrib><creatorcontrib>Olszowska, N</creatorcontrib><creatorcontrib>Kopciuszynski, M</creatorcontrib><creatorcontrib>Szalowski, K</creatorcontrib><creatorcontrib>Gmitra, M</creatorcontrib><creatorcontrib>Stepniewski, R</creatorcontrib><creatorcontrib>Jalochowski, M</creatorcontrib><creatorcontrib>Kolodziej, J Kolodziej</creatorcontrib><creatorcontrib>Wysmolek, A</creatorcontrib><creatorcontrib>Klusek, Z</creatorcontrib><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><title>Physical review. B</title><description>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</description><subject>Brillouin zones</subject><subject>Charge density waves</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Fermi level</subject><subject>Insulators</subject><subject>Mathematical analysis</subject><subject>Metal-insulator transition</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Scanning</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Spin-orbit interactions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EEhX0AqwssW2K7cSJvYSq_EiVQFDWleNM2lSpHWynUm7AmoNxCE5CChUCVvPp6c280QxCZ5SMKSXxxcOq84-wvRpLMaaSJ4wfoAFLUhlJmcrDH-bkGA29XxNCaEpkRuQAvU9r0MFZU2nsg2t1aB1gW2JtNxswvnUqwAgbUK7u_onKFLgyvzXcrJQHv-un84_Xt7l6YjjveueyhsiBt_UWit5lg4V9MPbNF3htm26EvVbGVGaJQ2sM1Dv6a9ilFn1gFTpctkaHyhpV47AC67pTdFSq2sNwX0_Q8_V0PrmNZvc3d5PLWdRQGoeoyBPdn0ZlRPNUpUBUJmQWy4RIVoAgsSx1qXIlU1FkJCYsV4xzSfNU5EpIEZ-g8--5jbMvLfiwWNvW9Xv4BaOc9l8QgsWf3tmFYw</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Lutsyk, I</creator><creator>Rogala, M</creator><creator>Dabrowski, P</creator><creator>Krukowski, P</creator><creator>Kowalczyk, P J</creator><creator>Busiakiewicz, A</creator><creator>Kowalczyk, D A</creator><creator>Lacinska, E</creator><creator>Binder, J</creator><creator>Olszowska, N</creator><creator>Kopciuszynski, M</creator><creator>Szalowski, K</creator><creator>Gmitra, M</creator><creator>Stepniewski, R</creator><creator>Jalochowski, M</creator><creator>Kolodziej, J Kolodziej</creator><creator>Wysmolek, A</creator><creator>Klusek, Z</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181119</creationdate><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><author>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-db4c969a70c56a6e0a7897394092de8039fcfaba968d70302ba25591b68ba8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brillouin zones</topic><topic>Charge density waves</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Fermi level</topic><topic>Insulators</topic><topic>Mathematical analysis</topic><topic>Metal-insulator transition</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Scanning</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutsyk, I</creatorcontrib><creatorcontrib>Rogala, M</creatorcontrib><creatorcontrib>Dabrowski, P</creatorcontrib><creatorcontrib>Krukowski, P</creatorcontrib><creatorcontrib>Kowalczyk, P J</creatorcontrib><creatorcontrib>Busiakiewicz, A</creatorcontrib><creatorcontrib>Kowalczyk, D A</creatorcontrib><creatorcontrib>Lacinska, E</creatorcontrib><creatorcontrib>Binder, J</creatorcontrib><creatorcontrib>Olszowska, N</creatorcontrib><creatorcontrib>Kopciuszynski, M</creatorcontrib><creatorcontrib>Szalowski, K</creatorcontrib><creatorcontrib>Gmitra, M</creatorcontrib><creatorcontrib>Stepniewski, R</creatorcontrib><creatorcontrib>Jalochowski, M</creatorcontrib><creatorcontrib>Kolodziej, J Kolodziej</creatorcontrib><creatorcontrib>Wysmolek, A</creatorcontrib><creatorcontrib>Klusek, Z</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutsyk, I</au><au>Rogala, M</au><au>Dabrowski, P</au><au>Krukowski, P</au><au>Kowalczyk, P J</au><au>Busiakiewicz, A</au><au>Kowalczyk, D A</au><au>Lacinska, E</au><au>Binder, J</au><au>Olszowska, N</au><au>Kopciuszynski, M</au><au>Szalowski, K</au><au>Gmitra, M</au><au>Stepniewski, R</au><au>Jalochowski, M</au><au>Kolodziej, J Kolodziej</au><au>Wysmolek, A</au><au>Klusek, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</atitle><jtitle>Physical review. B</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>19</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.195425</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-11, Vol.98 (19)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2151195882
source American Physical Society Journals
subjects Brillouin zones
Charge density waves
Density functional theory
Electron states
Electronic structure
Electrons
Energy gap
Fermi level
Insulators
Mathematical analysis
Metal-insulator transition
Photoelectron spectroscopy
Photoelectrons
Scanning
Scanning tunneling microscopy
Spectrum analysis
Spin-orbit interactions
title Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20commensurate,%20nearly%20commensurate,%20and%20incommensurate%20phases%20of%201T%E2%88%92TaS2%20by%20angle-resolved%20photoelectron%20spectroscopy,%20scanning%20tunneling%20spectroscopy,%20and%20density%20functional%20theory&rft.jtitle=Physical%20review.%20B&rft.au=Lutsyk,%20I&rft.date=2018-11-19&rft.volume=98&rft.issue=19&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.195425&rft_dat=%3Cproquest%3E2151195882%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151195882&rft_id=info:pmid/&rfr_iscdi=true