Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory
The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density func...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-11, Vol.98 (19) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Physical review. B |
container_volume | 98 |
creator | Lutsyk, I Rogala, M Dabrowski, P Krukowski, P Kowalczyk, P J Busiakiewicz, A Kowalczyk, D A Lacinska, E Binder, J Olszowska, N Kopciuszynski, M Szalowski, K Gmitra, M Stepniewski, R Jalochowski, M Kolodziej, J Kolodziej Wysmolek, A Klusek, Z |
description | The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling. |
doi_str_mv | 10.1103/PhysRevB.98.195425 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2151195882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151195882</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-db4c969a70c56a6e0a7897394092de8039fcfaba968d70302ba25591b68ba8983</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EEhX0AqwssW2K7cSJvYSq_EiVQFDWleNM2lSpHWynUm7AmoNxCE5CChUCVvPp6c280QxCZ5SMKSXxxcOq84-wvRpLMaaSJ4wfoAFLUhlJmcrDH-bkGA29XxNCaEpkRuQAvU9r0MFZU2nsg2t1aB1gW2JtNxswvnUqwAgbUK7u_onKFLgyvzXcrJQHv-un84_Xt7l6YjjveueyhsiBt_UWit5lg4V9MPbNF3htm26EvVbGVGaJQ2sM1Dv6a9ilFn1gFTpctkaHyhpV47AC67pTdFSq2sNwX0_Q8_V0PrmNZvc3d5PLWdRQGoeoyBPdn0ZlRPNUpUBUJmQWy4RIVoAgsSx1qXIlU1FkJCYsV4xzSfNU5EpIEZ-g8--5jbMvLfiwWNvW9Xv4BaOc9l8QgsWf3tmFYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151195882</pqid></control><display><type>article</type><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><source>American Physical Society Journals</source><creator>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</creator><creatorcontrib>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</creatorcontrib><description>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.195425</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Brillouin zones ; Charge density waves ; Density functional theory ; Electron states ; Electronic structure ; Electrons ; Energy gap ; Fermi level ; Insulators ; Mathematical analysis ; Metal-insulator transition ; Photoelectron spectroscopy ; Photoelectrons ; Scanning ; Scanning tunneling microscopy ; Spectrum analysis ; Spin-orbit interactions</subject><ispartof>Physical review. B, 2018-11, Vol.98 (19)</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lutsyk, I</creatorcontrib><creatorcontrib>Rogala, M</creatorcontrib><creatorcontrib>Dabrowski, P</creatorcontrib><creatorcontrib>Krukowski, P</creatorcontrib><creatorcontrib>Kowalczyk, P J</creatorcontrib><creatorcontrib>Busiakiewicz, A</creatorcontrib><creatorcontrib>Kowalczyk, D A</creatorcontrib><creatorcontrib>Lacinska, E</creatorcontrib><creatorcontrib>Binder, J</creatorcontrib><creatorcontrib>Olszowska, N</creatorcontrib><creatorcontrib>Kopciuszynski, M</creatorcontrib><creatorcontrib>Szalowski, K</creatorcontrib><creatorcontrib>Gmitra, M</creatorcontrib><creatorcontrib>Stepniewski, R</creatorcontrib><creatorcontrib>Jalochowski, M</creatorcontrib><creatorcontrib>Kolodziej, J Kolodziej</creatorcontrib><creatorcontrib>Wysmolek, A</creatorcontrib><creatorcontrib>Klusek, Z</creatorcontrib><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><title>Physical review. B</title><description>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</description><subject>Brillouin zones</subject><subject>Charge density waves</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Fermi level</subject><subject>Insulators</subject><subject>Mathematical analysis</subject><subject>Metal-insulator transition</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Scanning</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Spin-orbit interactions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EEhX0AqwssW2K7cSJvYSq_EiVQFDWleNM2lSpHWynUm7AmoNxCE5CChUCVvPp6c280QxCZ5SMKSXxxcOq84-wvRpLMaaSJ4wfoAFLUhlJmcrDH-bkGA29XxNCaEpkRuQAvU9r0MFZU2nsg2t1aB1gW2JtNxswvnUqwAgbUK7u_onKFLgyvzXcrJQHv-un84_Xt7l6YjjveueyhsiBt_UWit5lg4V9MPbNF3htm26EvVbGVGaJQ2sM1Dv6a9ilFn1gFTpctkaHyhpV47AC67pTdFSq2sNwX0_Q8_V0PrmNZvc3d5PLWdRQGoeoyBPdn0ZlRPNUpUBUJmQWy4RIVoAgsSx1qXIlU1FkJCYsV4xzSfNU5EpIEZ-g8--5jbMvLfiwWNvW9Xv4BaOc9l8QgsWf3tmFYw</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Lutsyk, I</creator><creator>Rogala, M</creator><creator>Dabrowski, P</creator><creator>Krukowski, P</creator><creator>Kowalczyk, P J</creator><creator>Busiakiewicz, A</creator><creator>Kowalczyk, D A</creator><creator>Lacinska, E</creator><creator>Binder, J</creator><creator>Olszowska, N</creator><creator>Kopciuszynski, M</creator><creator>Szalowski, K</creator><creator>Gmitra, M</creator><creator>Stepniewski, R</creator><creator>Jalochowski, M</creator><creator>Kolodziej, J Kolodziej</creator><creator>Wysmolek, A</creator><creator>Klusek, Z</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181119</creationdate><title>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</title><author>Lutsyk, I ; Rogala, M ; Dabrowski, P ; Krukowski, P ; Kowalczyk, P J ; Busiakiewicz, A ; Kowalczyk, D A ; Lacinska, E ; Binder, J ; Olszowska, N ; Kopciuszynski, M ; Szalowski, K ; Gmitra, M ; Stepniewski, R ; Jalochowski, M ; Kolodziej, J Kolodziej ; Wysmolek, A ; Klusek, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-db4c969a70c56a6e0a7897394092de8039fcfaba968d70302ba25591b68ba8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brillouin zones</topic><topic>Charge density waves</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Fermi level</topic><topic>Insulators</topic><topic>Mathematical analysis</topic><topic>Metal-insulator transition</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Scanning</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutsyk, I</creatorcontrib><creatorcontrib>Rogala, M</creatorcontrib><creatorcontrib>Dabrowski, P</creatorcontrib><creatorcontrib>Krukowski, P</creatorcontrib><creatorcontrib>Kowalczyk, P J</creatorcontrib><creatorcontrib>Busiakiewicz, A</creatorcontrib><creatorcontrib>Kowalczyk, D A</creatorcontrib><creatorcontrib>Lacinska, E</creatorcontrib><creatorcontrib>Binder, J</creatorcontrib><creatorcontrib>Olszowska, N</creatorcontrib><creatorcontrib>Kopciuszynski, M</creatorcontrib><creatorcontrib>Szalowski, K</creatorcontrib><creatorcontrib>Gmitra, M</creatorcontrib><creatorcontrib>Stepniewski, R</creatorcontrib><creatorcontrib>Jalochowski, M</creatorcontrib><creatorcontrib>Kolodziej, J Kolodziej</creatorcontrib><creatorcontrib>Wysmolek, A</creatorcontrib><creatorcontrib>Klusek, Z</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutsyk, I</au><au>Rogala, M</au><au>Dabrowski, P</au><au>Krukowski, P</au><au>Kowalczyk, P J</au><au>Busiakiewicz, A</au><au>Kowalczyk, D A</au><au>Lacinska, E</au><au>Binder, J</au><au>Olszowska, N</au><au>Kopciuszynski, M</au><au>Szalowski, K</au><au>Gmitra, M</au><au>Stepniewski, R</au><au>Jalochowski, M</au><au>Kolodziej, J Kolodziej</au><au>Wysmolek, A</au><au>Klusek, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory</atitle><jtitle>Physical review. B</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>19</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The electronic structure of 1T−TaS2 showing a metal-insulator transition and a sequence of different charge density wave (CDW) transformations was discussed in the frame of variable temperature angle-resolved photoelectron spectroscopy (ARPES), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. For the commensurate charge density wave phase (CCDW) the Mott gap was estimated to be 0.4 eV and energy gaps ΔCCDW,1,ΔCCDW,2,ΔB3−HHB,ΔB4−B3 were observed. For the nearly commensurate charge density wave phase (NCCDW), the reminiscent of higher and lower Hubbard bands and a very pronounced electronic state associated with the parabolic band at the Γ¯ point in the Brillouin zone were identified. The incommensurate charge density wave phase (ICCDW) showed a high value of local density of states at the Fermi level and a very pronounced edge of the metallic surface state located in the range of 0.15–0.20 eV above the Fermi level. The obtained STS and ARPES results were consistent with our theoretical calculations performed within DFT formalism including spin-orbit coupling.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.195425</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-11, Vol.98 (19) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2151195882 |
source | American Physical Society Journals |
subjects | Brillouin zones Charge density waves Density functional theory Electron states Electronic structure Electrons Energy gap Fermi level Insulators Mathematical analysis Metal-insulator transition Photoelectron spectroscopy Photoelectrons Scanning Scanning tunneling microscopy Spectrum analysis Spin-orbit interactions |
title | Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T−TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20commensurate,%20nearly%20commensurate,%20and%20incommensurate%20phases%20of%201T%E2%88%92TaS2%20by%20angle-resolved%20photoelectron%20spectroscopy,%20scanning%20tunneling%20spectroscopy,%20and%20density%20functional%20theory&rft.jtitle=Physical%20review.%20B&rft.au=Lutsyk,%20I&rft.date=2018-11-19&rft.volume=98&rft.issue=19&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.195425&rft_dat=%3Cproquest%3E2151195882%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151195882&rft_id=info:pmid/&rfr_iscdi=true |