Quantum Zeno effect and the many-body entanglement transition

We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-11, Vol.98 (20), p.205136, Article 205136
Hauptverfasser: Li, Yaodong, Chen, Xiao, Fisher, Matthew P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 205136
container_title Physical review. B
container_volume 98
creator Li, Yaodong
Chen, Xiao
Fisher, Matthew P. A.
description We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.
doi_str_mv 10.1103/PhysRevB.98.205136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151190898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151190898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeA56353rwHD1q0CgU_0IuXkKZZu6WbrUlW2H_vyqqnGYZhBh6EzimZU0r45dO2Ty_-62YOes6IpFwdoQkTCgoABcf_XpJTNEtpRwihikBJYIKunjsbctfgdx9a7KvKu4xt2OC89bixoS_W7abHPmQbPva-GQzO0YZU57oNZ-iksvvkZ786RW93t6-L-2L1uHxYXK8KJ7jIhVWKMuWc4kSthdZCOz4kbuNVaaViAFQC00AdMMdBSyHLijELDoQoGeVTdDHuHmL72fmUza7tYhguDaOSUiAa9NBiY8vFNqXoK3OIdWNjbygxP6TMHykD2oyk-DdVgFt7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151190898</pqid></control><display><type>article</type><title>Quantum Zeno effect and the many-body entanglement transition</title><source>American Physical Society Journals</source><creator>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</creator><creatorcontrib>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</creatorcontrib><description>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.205136</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Circuits ; Computer simulation ; Gates (circuits) ; Laws ; Mathematical analysis ; Mathematical models ; Phase transitions ; Quantum entanglement ; Quantum mechanics ; Qubits (quantum computing) ; Wave functions</subject><ispartof>Physical review. B, 2018-11, Vol.98 (20), p.205136, Article 205136</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</citedby><cites>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yaodong</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fisher, Matthew P. A.</creatorcontrib><title>Quantum Zeno effect and the many-body entanglement transition</title><title>Physical review. B</title><description>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</description><subject>Circuits</subject><subject>Computer simulation</subject><subject>Gates (circuits)</subject><subject>Laws</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Phase transitions</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Qubits (quantum computing)</subject><subject>Wave functions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeA56353rwHD1q0CgU_0IuXkKZZu6WbrUlW2H_vyqqnGYZhBh6EzimZU0r45dO2Ty_-62YOes6IpFwdoQkTCgoABcf_XpJTNEtpRwihikBJYIKunjsbctfgdx9a7KvKu4xt2OC89bixoS_W7abHPmQbPva-GQzO0YZU57oNZ-iksvvkZ786RW93t6-L-2L1uHxYXK8KJ7jIhVWKMuWc4kSthdZCOz4kbuNVaaViAFQC00AdMMdBSyHLijELDoQoGeVTdDHuHmL72fmUza7tYhguDaOSUiAa9NBiY8vFNqXoK3OIdWNjbygxP6TMHykD2oyk-DdVgFt7</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Li, Yaodong</creator><creator>Chen, Xiao</creator><creator>Fisher, Matthew P. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181119</creationdate><title>Quantum Zeno effect and the many-body entanglement transition</title><author>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits</topic><topic>Computer simulation</topic><topic>Gates (circuits)</topic><topic>Laws</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Phase transitions</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Qubits (quantum computing)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yaodong</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fisher, Matthew P. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yaodong</au><au>Chen, Xiao</au><au>Fisher, Matthew P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Zeno effect and the many-body entanglement transition</atitle><jtitle>Physical review. B</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>20</issue><spage>205136</spage><pages>205136-</pages><artnum>205136</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.205136</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-11, Vol.98 (20), p.205136, Article 205136
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2151190898
source American Physical Society Journals
subjects Circuits
Computer simulation
Gates (circuits)
Laws
Mathematical analysis
Mathematical models
Phase transitions
Quantum entanglement
Quantum mechanics
Qubits (quantum computing)
Wave functions
title Quantum Zeno effect and the many-body entanglement transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Zeno%20effect%20and%20the%20many-body%20entanglement%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Li,%20Yaodong&rft.date=2018-11-19&rft.volume=98&rft.issue=20&rft.spage=205136&rft.pages=205136-&rft.artnum=205136&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.205136&rft_dat=%3Cproquest_cross%3E2151190898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151190898&rft_id=info:pmid/&rfr_iscdi=true