Quantum Zeno effect and the many-body entanglement transition
We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout th...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-11, Vol.98 (20), p.205136, Article 205136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 205136 |
container_title | Physical review. B |
container_volume | 98 |
creator | Li, Yaodong Chen, Xiao Fisher, Matthew P. A. |
description | We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed. |
doi_str_mv | 10.1103/PhysRevB.98.205136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2151190898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151190898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeA56353rwHD1q0CgU_0IuXkKZZu6WbrUlW2H_vyqqnGYZhBh6EzimZU0r45dO2Ty_-62YOes6IpFwdoQkTCgoABcf_XpJTNEtpRwihikBJYIKunjsbctfgdx9a7KvKu4xt2OC89bixoS_W7abHPmQbPva-GQzO0YZU57oNZ-iksvvkZ786RW93t6-L-2L1uHxYXK8KJ7jIhVWKMuWc4kSthdZCOz4kbuNVaaViAFQC00AdMMdBSyHLijELDoQoGeVTdDHuHmL72fmUza7tYhguDaOSUiAa9NBiY8vFNqXoK3OIdWNjbygxP6TMHykD2oyk-DdVgFt7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151190898</pqid></control><display><type>article</type><title>Quantum Zeno effect and the many-body entanglement transition</title><source>American Physical Society Journals</source><creator>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</creator><creatorcontrib>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</creatorcontrib><description>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.205136</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Circuits ; Computer simulation ; Gates (circuits) ; Laws ; Mathematical analysis ; Mathematical models ; Phase transitions ; Quantum entanglement ; Quantum mechanics ; Qubits (quantum computing) ; Wave functions</subject><ispartof>Physical review. B, 2018-11, Vol.98 (20), p.205136, Article 205136</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</citedby><cites>FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yaodong</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fisher, Matthew P. A.</creatorcontrib><title>Quantum Zeno effect and the many-body entanglement transition</title><title>Physical review. B</title><description>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</description><subject>Circuits</subject><subject>Computer simulation</subject><subject>Gates (circuits)</subject><subject>Laws</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Phase transitions</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Qubits (quantum computing)</subject><subject>Wave functions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeA56353rwHD1q0CgU_0IuXkKZZu6WbrUlW2H_vyqqnGYZhBh6EzimZU0r45dO2Ty_-62YOes6IpFwdoQkTCgoABcf_XpJTNEtpRwihikBJYIKunjsbctfgdx9a7KvKu4xt2OC89bixoS_W7abHPmQbPva-GQzO0YZU57oNZ-iksvvkZ786RW93t6-L-2L1uHxYXK8KJ7jIhVWKMuWc4kSthdZCOz4kbuNVaaViAFQC00AdMMdBSyHLijELDoQoGeVTdDHuHmL72fmUza7tYhguDaOSUiAa9NBiY8vFNqXoK3OIdWNjbygxP6TMHykD2oyk-DdVgFt7</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Li, Yaodong</creator><creator>Chen, Xiao</creator><creator>Fisher, Matthew P. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20181119</creationdate><title>Quantum Zeno effect and the many-body entanglement transition</title><author>Li, Yaodong ; Chen, Xiao ; Fisher, Matthew P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-a66126cc6306b48848c3612cde67a562991592891c92c3985457f22a9c9447213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits</topic><topic>Computer simulation</topic><topic>Gates (circuits)</topic><topic>Laws</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Phase transitions</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Qubits (quantum computing)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yaodong</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fisher, Matthew P. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yaodong</au><au>Chen, Xiao</au><au>Fisher, Matthew P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Zeno effect and the many-body entanglement transition</atitle><jtitle>Physical review. B</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>20</issue><spage>205136</spage><pages>205136-</pages><artnum>205136</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We introduce and explore a one-dimensional “hybrid” quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a “quantum Zeno phase” where strong measurements suppress the entanglement growth to saturate in an area law. Extensive numerical simulations of the quantum trajectories of the many-particle wave functions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable “weak measurement phase” that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a continuous quantum dynamical phase transition between the “weak measurement phase” and the “quantum Zeno phase,” driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this quantum entanglement transition are accessed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.205136</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-11, Vol.98 (20), p.205136, Article 205136 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2151190898 |
source | American Physical Society Journals |
subjects | Circuits Computer simulation Gates (circuits) Laws Mathematical analysis Mathematical models Phase transitions Quantum entanglement Quantum mechanics Qubits (quantum computing) Wave functions |
title | Quantum Zeno effect and the many-body entanglement transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Zeno%20effect%20and%20the%20many-body%20entanglement%20transition&rft.jtitle=Physical%20review.%20B&rft.au=Li,%20Yaodong&rft.date=2018-11-19&rft.volume=98&rft.issue=20&rft.spage=205136&rft.pages=205136-&rft.artnum=205136&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.205136&rft_dat=%3Cproquest_cross%3E2151190898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151190898&rft_id=info:pmid/&rfr_iscdi=true |