LiCaAlF6 scintillators in neutron and gamma radiation fields

Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Viererbl, L., Klupák, V., Vinš, M., Koleška, M., Šoltés, J., Yoshikawa, A., Nikl, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 44
creator Viererbl, L.
Klupák, V.
Vinš, M.
Koleška, M.
Šoltés, J.
Yoshikawa, A.
Nikl, M.
description Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to 6 Li. A plutonium–beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 1 3 7 Cs and 6 0 Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.
doi_str_mv 10.1142/S2010194516602349
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_proquest_journals_2150571205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150571205</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1549-eae776e92bfe5888be5a234f57fbee04d2edde68fdb2e5ad39d620593a9fc8123</originalsourceid><addsrcrecordid>eNplkMFKxDAQhoMguKz7AN4CnqtJmqQJeFmKq0LBg3ouaTORLG1akxbx7c2y3jwNfPMx888gdEPJHaWc3b8xQgnVXFApCSu5vkCbEypO7ArtUjoSQqiqlBZ8gx4aX5v9cJA49T4sfhjMMsWEfcAB1iVOAZtg8acZR4Ojsd4sPjPnYbDpGl06MyTY_dUt-jg8vtfPRfP69FLvm2KmgusCDFSVBM06B0Ip1YEwOZkTlesACLcMrAWpnO1YbtlSW8mI0KXRrleUlVt0e547x-lrhbS0x2mNIa9sGRVEVDTr2SJn63uKOVzvId_jfN_O0Y8m_rT_XlP-AreSWNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2150571205</pqid></control><display><type>conference_proceeding</type><title>LiCaAlF6 scintillators in neutron and gamma radiation fields</title><source>World Scientific Open</source><source>EZB-FREE-00999 freely available EZB journals</source><source>World Scientific Journals</source><creator>Viererbl, L. ; Klupák, V. ; Vinš, M. ; Koleška, M. ; Šoltés, J. ; Yoshikawa, A. ; Nikl, M.</creator><creatorcontrib>Viererbl, L. ; Klupák, V. ; Vinš, M. ; Koleška, M. ; Šoltés, J. ; Yoshikawa, A. ; Nikl, M.</creatorcontrib><description>Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to 6 Li. A plutonium–beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 1 3 7 Cs and 6 0 Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.</description><identifier>EISSN: 2010-1945</identifier><identifier>DOI: 10.1142/S2010194516602349</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Beryllium ; Cesium 137 ; Cesium isotopes ; Discrimination ; Fast neutrons ; Fluence ; Gamma rays ; Lithium ; Neutrons ; Novel Detectors ; Photomultiplier tubes ; Plutonium ; Pulse amplitude ; Pulse shape ; Radiation sources ; Radioisotopes ; Rubber ; Scintillation counters ; Single crystals ; Thermal neutrons</subject><ispartof>International journal of modern physics. Conference series, 2016, Vol.44</ispartof><rights>2016, The Author(s)</rights><rights>2016. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S2010194516602349$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>309,310,314,776,780,785,786,4009,4858,23910,23911,25119,27476,27902,27903,27904,55547,55565</link.rule.ids></links><search><creatorcontrib>Viererbl, L.</creatorcontrib><creatorcontrib>Klupák, V.</creatorcontrib><creatorcontrib>Vinš, M.</creatorcontrib><creatorcontrib>Koleška, M.</creatorcontrib><creatorcontrib>Šoltés, J.</creatorcontrib><creatorcontrib>Yoshikawa, A.</creatorcontrib><creatorcontrib>Nikl, M.</creatorcontrib><title>LiCaAlF6 scintillators in neutron and gamma radiation fields</title><title>International journal of modern physics. Conference series</title><description>Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to 6 Li. A plutonium–beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 1 3 7 Cs and 6 0 Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.</description><subject>Beryllium</subject><subject>Cesium 137</subject><subject>Cesium isotopes</subject><subject>Discrimination</subject><subject>Fast neutrons</subject><subject>Fluence</subject><subject>Gamma rays</subject><subject>Lithium</subject><subject>Neutrons</subject><subject>Novel Detectors</subject><subject>Photomultiplier tubes</subject><subject>Plutonium</subject><subject>Pulse amplitude</subject><subject>Pulse shape</subject><subject>Radiation sources</subject><subject>Radioisotopes</subject><subject>Rubber</subject><subject>Scintillation counters</subject><subject>Single crystals</subject><subject>Thermal neutrons</subject><issn>2010-1945</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkMFKxDAQhoMguKz7AN4CnqtJmqQJeFmKq0LBg3ouaTORLG1akxbx7c2y3jwNfPMx888gdEPJHaWc3b8xQgnVXFApCSu5vkCbEypO7ArtUjoSQqiqlBZ8gx4aX5v9cJA49T4sfhjMMsWEfcAB1iVOAZtg8acZR4Ojsd4sPjPnYbDpGl06MyTY_dUt-jg8vtfPRfP69FLvm2KmgusCDFSVBM06B0Ip1YEwOZkTlesACLcMrAWpnO1YbtlSW8mI0KXRrleUlVt0e547x-lrhbS0x2mNIa9sGRVEVDTr2SJn63uKOVzvId_jfN_O0Y8m_rT_XlP-AreSWNg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Viererbl, L.</creator><creator>Klupák, V.</creator><creator>Vinš, M.</creator><creator>Koleška, M.</creator><creator>Šoltés, J.</creator><creator>Yoshikawa, A.</creator><creator>Nikl, M.</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>LiCaAlF6 scintillators in neutron and gamma radiation fields</title><author>Viererbl, L. ; Klupák, V. ; Vinš, M. ; Koleška, M. ; Šoltés, J. ; Yoshikawa, A. ; Nikl, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1549-eae776e92bfe5888be5a234f57fbee04d2edde68fdb2e5ad39d620593a9fc8123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Beryllium</topic><topic>Cesium 137</topic><topic>Cesium isotopes</topic><topic>Discrimination</topic><topic>Fast neutrons</topic><topic>Fluence</topic><topic>Gamma rays</topic><topic>Lithium</topic><topic>Neutrons</topic><topic>Novel Detectors</topic><topic>Photomultiplier tubes</topic><topic>Plutonium</topic><topic>Pulse amplitude</topic><topic>Pulse shape</topic><topic>Radiation sources</topic><topic>Radioisotopes</topic><topic>Rubber</topic><topic>Scintillation counters</topic><topic>Single crystals</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viererbl, L.</creatorcontrib><creatorcontrib>Klupák, V.</creatorcontrib><creatorcontrib>Vinš, M.</creatorcontrib><creatorcontrib>Koleška, M.</creatorcontrib><creatorcontrib>Šoltés, J.</creatorcontrib><creatorcontrib>Yoshikawa, A.</creatorcontrib><creatorcontrib>Nikl, M.</creatorcontrib><collection>World Scientific Open</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viererbl, L.</au><au>Klupák, V.</au><au>Vinš, M.</au><au>Koleška, M.</au><au>Šoltés, J.</au><au>Yoshikawa, A.</au><au>Nikl, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LiCaAlF6 scintillators in neutron and gamma radiation fields</atitle><btitle>International journal of modern physics. Conference series</btitle><date>2016</date><risdate>2016</risdate><volume>44</volume><eissn>2010-1945</eissn><abstract>Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to 6 Li. A plutonium–beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 1 3 7 Cs and 6 0 Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S2010194516602349</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2010-1945
ispartof International journal of modern physics. Conference series, 2016, Vol.44
issn 2010-1945
language eng
recordid cdi_proquest_journals_2150571205
source World Scientific Open; EZB-FREE-00999 freely available EZB journals; World Scientific Journals
subjects Beryllium
Cesium 137
Cesium isotopes
Discrimination
Fast neutrons
Fluence
Gamma rays
Lithium
Neutrons
Novel Detectors
Photomultiplier tubes
Plutonium
Pulse amplitude
Pulse shape
Radiation sources
Radioisotopes
Rubber
Scintillation counters
Single crystals
Thermal neutrons
title LiCaAlF6 scintillators in neutron and gamma radiation fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LiCaAlF6%20scintillators%20in%20neutron%20and%20gamma%20radiation%20fields&rft.btitle=International%20journal%20of%20modern%20physics.%20Conference%20series&rft.au=Viererbl,%20L.&rft.date=2016&rft.volume=44&rft.eissn=2010-1945&rft_id=info:doi/10.1142/S2010194516602349&rft_dat=%3Cproquest_world%3E2150571205%3C/proquest_world%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150571205&rft_id=info:pmid/&rfr_iscdi=true