Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads
Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2019-01, Vol.42 (1), p.31-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 42 |
creator | Lin, JX Huang, PY Guo, XY Zheng, XH Zhao, C. |
description | Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective. |
doi_str_mv | 10.1111/ffe.12863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2149586120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149586120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOP88-A0CPvnQLWnStH2UsqowUIaCbyFNbraOtqlJ69i3t3O-el8OF37nHDgI3VEyp9MtrIU5jTPBztCMckGiWOTJOZplaSKiNMk-L9FVCDtCqOCMzdBYqqHejIB78Nb5VnUasLN4XeAKVBtwGDx0m2ELHRi8r4ctLsr1Gx47Ax5rN_ZN3W2w0kPtuqNxgHaKUsPoIWDVGfwN21o3gP30uBY3Tplwgy6sagLc_uk1-iiX78VztHp9eikeV5FmLGZRBcTmlGuaxlyAhsxYmqaUVrnizGhKBeU2VkQJziExkyRVzA3TnHNCFLBrdH_K7b37GiEMcudG302VMqY8TzJBYzJRDydKexeCByt7X7fKHyQl8riqnFaVv6tO7OLE7usGDv-DsiyXJ8cPo615pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149586120</pqid></control><display><type>article</type><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><source>Wiley Journals</source><creator>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</creator><creatorcontrib>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</creatorcontrib><description>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.12863</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Beams (structural) ; Bending fatigue ; Carbon fiber reinforced plastics ; carbon fibre–reinforced polymer (CFRP) ; Concrete bridges ; Coupling ; coupling action ; Crack propagation ; Fatigue failure ; fatigue performance ; Fatigue tests ; Palmgren-Miner rule ; Polymers ; Random loads ; Reinforced concrete ; reinforced concrete (RC) beam ; temperature ; vehicle random load</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2019-01, Vol.42 (1), p.31-44</ispartof><rights>2018 Wiley Publishing Ltd.</rights><rights>2019 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</citedby><cites>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</cites><orcidid>0000-0002-8861-8766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.12863$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.12863$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, JX</creatorcontrib><creatorcontrib>Huang, PY</creatorcontrib><creatorcontrib>Guo, XY</creatorcontrib><creatorcontrib>Zheng, XH</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><title>Fatigue & fracture of engineering materials & structures</title><description>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</description><subject>Beams (structural)</subject><subject>Bending fatigue</subject><subject>Carbon fiber reinforced plastics</subject><subject>carbon fibre–reinforced polymer (CFRP)</subject><subject>Concrete bridges</subject><subject>Coupling</subject><subject>coupling action</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>fatigue performance</subject><subject>Fatigue tests</subject><subject>Palmgren-Miner rule</subject><subject>Polymers</subject><subject>Random loads</subject><subject>Reinforced concrete</subject><subject>reinforced concrete (RC) beam</subject><subject>temperature</subject><subject>vehicle random load</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOP88-A0CPvnQLWnStH2UsqowUIaCbyFNbraOtqlJ69i3t3O-el8OF37nHDgI3VEyp9MtrIU5jTPBztCMckGiWOTJOZplaSKiNMk-L9FVCDtCqOCMzdBYqqHejIB78Nb5VnUasLN4XeAKVBtwGDx0m2ELHRi8r4ctLsr1Gx47Ax5rN_ZN3W2w0kPtuqNxgHaKUsPoIWDVGfwN21o3gP30uBY3Tplwgy6sagLc_uk1-iiX78VztHp9eikeV5FmLGZRBcTmlGuaxlyAhsxYmqaUVrnizGhKBeU2VkQJziExkyRVzA3TnHNCFLBrdH_K7b37GiEMcudG302VMqY8TzJBYzJRDydKexeCByt7X7fKHyQl8riqnFaVv6tO7OLE7usGDv-DsiyXJ8cPo615pQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Lin, JX</creator><creator>Huang, PY</creator><creator>Guo, XY</creator><creator>Zheng, XH</creator><creator>Zhao, C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8861-8766</orcidid></search><sort><creationdate>201901</creationdate><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><author>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beams (structural)</topic><topic>Bending fatigue</topic><topic>Carbon fiber reinforced plastics</topic><topic>carbon fibre–reinforced polymer (CFRP)</topic><topic>Concrete bridges</topic><topic>Coupling</topic><topic>coupling action</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>fatigue performance</topic><topic>Fatigue tests</topic><topic>Palmgren-Miner rule</topic><topic>Polymers</topic><topic>Random loads</topic><topic>Reinforced concrete</topic><topic>reinforced concrete (RC) beam</topic><topic>temperature</topic><topic>vehicle random load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, JX</creatorcontrib><creatorcontrib>Huang, PY</creatorcontrib><creatorcontrib>Guo, XY</creatorcontrib><creatorcontrib>Zheng, XH</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, JX</au><au>Huang, PY</au><au>Guo, XY</au><au>Zheng, XH</au><au>Zhao, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2019-01</date><risdate>2019</risdate><volume>42</volume><issue>1</issue><spage>31</spage><epage>44</epage><pages>31-44</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.12863</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8861-8766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2019-01, Vol.42 (1), p.31-44 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2149586120 |
source | Wiley Journals |
subjects | Beams (structural) Bending fatigue Carbon fiber reinforced plastics carbon fibre–reinforced polymer (CFRP) Concrete bridges Coupling coupling action Crack propagation Fatigue failure fatigue performance Fatigue tests Palmgren-Miner rule Polymers Random loads Reinforced concrete reinforced concrete (RC) beam temperature vehicle random load |
title | Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20performance%20of%20RC%20beams%20strengthened%20with%20CFRP%20under%20coupling%20action%20of%20temperatures%20and%20vehicle%20random%20loads&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Lin,%20JX&rft.date=2019-01&rft.volume=42&rft.issue=1&rft.spage=31&rft.epage=44&rft.pages=31-44&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.12863&rft_dat=%3Cproquest_cross%3E2149586120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149586120&rft_id=info:pmid/&rfr_iscdi=true |