Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads

Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2019-01, Vol.42 (1), p.31-44
Hauptverfasser: Lin, JX, Huang, PY, Guo, XY, Zheng, XH, Zhao, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 31
container_title Fatigue & fracture of engineering materials & structures
container_volume 42
creator Lin, JX
Huang, PY
Guo, XY
Zheng, XH
Zhao, C.
description Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.
doi_str_mv 10.1111/ffe.12863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2149586120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149586120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOP88-A0CPvnQLWnStH2UsqowUIaCbyFNbraOtqlJ69i3t3O-el8OF37nHDgI3VEyp9MtrIU5jTPBztCMckGiWOTJOZplaSKiNMk-L9FVCDtCqOCMzdBYqqHejIB78Nb5VnUasLN4XeAKVBtwGDx0m2ELHRi8r4ctLsr1Gx47Ax5rN_ZN3W2w0kPtuqNxgHaKUsPoIWDVGfwN21o3gP30uBY3Tplwgy6sagLc_uk1-iiX78VztHp9eikeV5FmLGZRBcTmlGuaxlyAhsxYmqaUVrnizGhKBeU2VkQJziExkyRVzA3TnHNCFLBrdH_K7b37GiEMcudG302VMqY8TzJBYzJRDydKexeCByt7X7fKHyQl8riqnFaVv6tO7OLE7usGDv-DsiyXJ8cPo615pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149586120</pqid></control><display><type>article</type><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><source>Wiley Journals</source><creator>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</creator><creatorcontrib>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</creatorcontrib><description>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.12863</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Beams (structural) ; Bending fatigue ; Carbon fiber reinforced plastics ; carbon fibre–reinforced polymer (CFRP) ; Concrete bridges ; Coupling ; coupling action ; Crack propagation ; Fatigue failure ; fatigue performance ; Fatigue tests ; Palmgren-Miner rule ; Polymers ; Random loads ; Reinforced concrete ; reinforced concrete (RC) beam ; temperature ; vehicle random load</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2019-01, Vol.42 (1), p.31-44</ispartof><rights>2018 Wiley Publishing Ltd.</rights><rights>2019 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</citedby><cites>FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</cites><orcidid>0000-0002-8861-8766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.12863$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.12863$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, JX</creatorcontrib><creatorcontrib>Huang, PY</creatorcontrib><creatorcontrib>Guo, XY</creatorcontrib><creatorcontrib>Zheng, XH</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</description><subject>Beams (structural)</subject><subject>Bending fatigue</subject><subject>Carbon fiber reinforced plastics</subject><subject>carbon fibre–reinforced polymer (CFRP)</subject><subject>Concrete bridges</subject><subject>Coupling</subject><subject>coupling action</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>fatigue performance</subject><subject>Fatigue tests</subject><subject>Palmgren-Miner rule</subject><subject>Polymers</subject><subject>Random loads</subject><subject>Reinforced concrete</subject><subject>reinforced concrete (RC) beam</subject><subject>temperature</subject><subject>vehicle random load</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOP88-A0CPvnQLWnStH2UsqowUIaCbyFNbraOtqlJ69i3t3O-el8OF37nHDgI3VEyp9MtrIU5jTPBztCMckGiWOTJOZplaSKiNMk-L9FVCDtCqOCMzdBYqqHejIB78Nb5VnUasLN4XeAKVBtwGDx0m2ELHRi8r4ctLsr1Gx47Ax5rN_ZN3W2w0kPtuqNxgHaKUsPoIWDVGfwN21o3gP30uBY3Tplwgy6sagLc_uk1-iiX78VztHp9eikeV5FmLGZRBcTmlGuaxlyAhsxYmqaUVrnizGhKBeU2VkQJziExkyRVzA3TnHNCFLBrdH_K7b37GiEMcudG302VMqY8TzJBYzJRDydKexeCByt7X7fKHyQl8riqnFaVv6tO7OLE7usGDv-DsiyXJ8cPo615pQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Lin, JX</creator><creator>Huang, PY</creator><creator>Guo, XY</creator><creator>Zheng, XH</creator><creator>Zhao, C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8861-8766</orcidid></search><sort><creationdate>201901</creationdate><title>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</title><author>Lin, JX ; Huang, PY ; Guo, XY ; Zheng, XH ; Zhao, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-be0f914c17246ece8df17711b9a43dc11614f2a0a644e5da645b24d3c44400ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beams (structural)</topic><topic>Bending fatigue</topic><topic>Carbon fiber reinforced plastics</topic><topic>carbon fibre–reinforced polymer (CFRP)</topic><topic>Concrete bridges</topic><topic>Coupling</topic><topic>coupling action</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>fatigue performance</topic><topic>Fatigue tests</topic><topic>Palmgren-Miner rule</topic><topic>Polymers</topic><topic>Random loads</topic><topic>Reinforced concrete</topic><topic>reinforced concrete (RC) beam</topic><topic>temperature</topic><topic>vehicle random load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, JX</creatorcontrib><creatorcontrib>Huang, PY</creatorcontrib><creatorcontrib>Guo, XY</creatorcontrib><creatorcontrib>Zheng, XH</creatorcontrib><creatorcontrib>Zhao, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, JX</au><au>Huang, PY</au><au>Guo, XY</au><au>Zheng, XH</au><au>Zhao, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2019-01</date><risdate>2019</risdate><volume>42</volume><issue>1</issue><spage>31</spage><epage>44</epage><pages>31-44</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.12863</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8861-8766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2019-01, Vol.42 (1), p.31-44
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2149586120
source Wiley Journals
subjects Beams (structural)
Bending fatigue
Carbon fiber reinforced plastics
carbon fibre–reinforced polymer (CFRP)
Concrete bridges
Coupling
coupling action
Crack propagation
Fatigue failure
fatigue performance
Fatigue tests
Palmgren-Miner rule
Polymers
Random loads
Reinforced concrete
reinforced concrete (RC) beam
temperature
vehicle random load
title Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20performance%20of%20RC%20beams%20strengthened%20with%20CFRP%20under%20coupling%20action%20of%20temperatures%20and%20vehicle%20random%20loads&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Lin,%20JX&rft.date=2019-01&rft.volume=42&rft.issue=1&rft.spage=31&rft.epage=44&rft.pages=31-44&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.12863&rft_dat=%3Cproquest_cross%3E2149586120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149586120&rft_id=info:pmid/&rfr_iscdi=true