Fatigue performance of RC beams strengthened with CFRP under coupling action of temperatures and vehicle random loads
Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2019-01, Vol.42 (1), p.31-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective. |
---|---|
ISSN: | 8756-758X 1460-2695 |
DOI: | 10.1111/ffe.12863 |